首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Cucurbitacin delta 23-reductase from Cucurbita maxima var. Green Hubbard fruit displays an apparent Mr of 32,000, a Stokes radius of 263 nm and a diffusion coefficient of 8.93 X 10(-7) cm2 X s-1. The enzyme appears to possess a homogeneous dimeric quaternary structure with a subunit Mr of 15,000. Two tryptophan and fourteen tyrosine residues per dimer were found. Emission spectral properties of the enzyme and fluorescence quenching by iodide indicate the tryptophan residues to be buried within the protein molecule. In the pH range 5-7, where no conformational changes were detected, protonation of a sterically related ionizable group with a pK of approx. 6.0 markedly influenced the fluorescence of the tryptophan residues. Protein fluorescence quenching was employed to determine the dissociation constants for binding of NADPH (Kd 17 microM), NADP+ (Kd 30 microM) and elaterinide (Kd 227 microM). Fluorescence energy transfer between the tryptophan residues and enzyme-bound NADPH was observed.  相似文献   

2.
We have studied the kinetics of binding of the menaquinol analog 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) by fumarate reductase (FrdABCD) using the stopped-flow method. The results show that the fluorescence of HOQNO is quenched when HOQNO binds to FrdABCD. The observed quenching of HOQNO fluorescence has two phases and it can be best fitted to a double exponential equation. A two-step equilibrium model is applied to describe the binding process in which HOQNO associates with FrdABCD by a fast bimolecular step to form a loosely bound complex; this is subsequently converted into a tightly bound complex by a slow unimolecular step. The rates of the forward and the reverse reactions for the first equilibrium (k1 and k2) are determined to be k1 = (1.1 +/- 0.1) x 10(7) M-1.s-1, and k2 = 6.0 +/- 0.6 s-1, respectively. The dissociation constants of the first equilibrium (Kd1 = k2/k1) is calculated to be about 550 nM. The overall dissociation constant for the two-step equilibrium, Kd overall = Kd1/[1+ (1/Kd2)], is estimated to be < or = 7 nM. Comparison of the kinetic parameters of HOQNO binding by FrdABCD and by dimethyl sulfoxide reductase provides important information on menaquinol binding by these two enzymes.  相似文献   

3.
Characteristics of murine protoporphyrinogen oxidase.   总被引:2,自引:1,他引:1       下载免费PDF全文
Protoporphyrinogen oxidase (EC 1.3.3.4) (PPO) is the penultimate enzyme of the heme biosynthetic pathway. Mouse PPO has been purified in low yield and kinetically characterized by this laboratory previously. A new more rapid purification procedure is described herein, and with this protein we detect a noncovalently bound flavin moiety. This flavin is present at approximately stoichiometric amounts in the purified enzyme and has been identified by its fluorescence spectrum and high performance liquid chromatography as flavin mononucleotide (FMN). Fluorescence quenching studies on the flavin yielded a Stern-Volmer quenching constant of 12.08 M-1 for iodide and 1.1 M-1 for acrylamide. Quenching of enzyme tryptophan fluorescence resulted in quenching constants of 6 M-1 and 10 M-1 for iodide and acrylamide, respectively. Plasma scans performed on purified enzyme preparations did not reveal the presence of stoichiometric amounts of protein-bound metal ions, and we were unable to detect any protein-associated pyrroloquinoline quinone (PQQ). Data from circular dichroism studies predict a secondary structure of the native protein consisting of 30.5% alpha helix, 40.5% beta sheet, 13.7% turn, and 15.3% random coil. Denaturation of PPO with urea resulted in a biphasic curve when ellipticity is plotted against urea concentration, typical of amphipathic proteins.  相似文献   

4.
L D Faller 《Biochemistry》1989,28(16):6771-6778
ATP and the fluorescent substrate analogue TNP-ATP bind competitively to the gastric H,-K-ATPase. Substrate and product completely reverse the fluorescence enhancement caused by TNP-ATP binding to the enzyme. The fluorophore is displaced monophasically from apoenzyme. However, ATP displaces TNP-ATP from the Mg2+-quenched state in two steps of equal amplitude. The midpoints of the titrations differ by more than 2 orders of magnitude. The estimated substrate constants are in reasonable agreement with published Michaelis constants. TNP-ATP is not a substrate for the H,K-ATPase. The fluorophore prevents phosphorylation by ATP and competitively inhibits the K+-stimulated pNPPase and ATPase activities of the enzyme. Ki is approximately the same for both hydrolytic activities and consistent with the Kd of TNP-ATP measured directly. Km for pNPP is 1.48 +/- 0.15 mM. Two Michaelis constants are required to fit the ATPase data: Km1 = 0.10 +/- 0.01 mM and Km2 = 0.26 +/- 0.05 mM.  相似文献   

5.
The equilibrium dissociation constant of NAD+ and pertussis toxin was determined by equilibrium dialysis and by the quenching of the protein's intrinsic fluorescence on titration with NAD+. A binding constant, Kd, of 24 +/- 2 microM at 30 degrees C was obtained from equilibrium dialysis, consistent with the previously determined value for the Michaelis constant, Km, of 30 +/- 5 microM for NAD+ (when the toxin is catalysing the ADP-ribosylation of water and of dithiothreitol). The intrinsic fluorescence of pertussis toxin was quenched by up to 60% on titration with NAD+, and after correction for dilution and inner filter effects, a Kd value of 27 microM at 30 degrees C was obtained, agreeing well with that found by equilibrium dialysis. The binding constants were measured at a number of temperatures using both techniques, and from this the enthalpy of binding of NAD+ to toxin was determined to be 30 kJ.mol-1, a typical value for a protein-ligand interaction. There is one binding site for NAD+ per toxin molecule.  相似文献   

6.
The Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane was partly purified by treatments with sodium cholate and lysophosphatidylcholine, and by isopycnic centrifugation on sucrose gradients. The ATPase activity had high sensitivity to detergents, poor nucleotide specificity and broad tolerance for divalent cations. It was insensitive to mitochondrial ATPase inhibitors such as oligomycin and to transport ATPase inhibitors such as vanadate and ouabain. Using the cholate dialysis procedure, the partly purified enzyme was incorporated into asolectin vesicles. Upon addition of Mg2+-ATP, fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) was observed. The quenching was abolished by a protonophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Asolectin vesicles or purified ATPase alone failed to promote quenching. These data suggest that the Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane is able of H+-translocation coupled to ATP hydrolysis.  相似文献   

7.
Zinc cytochrome c forms tight 1:1 complexes with a variety of derivatives of cytochrome c oxidase. On complex-formation the fluorescence of zinc cytochrome c is diminished. Titrations of zinc cytochrome c with cytochrome c oxidase, followed through the fluorescence emission of the former, have yielded both binding constants (K approximately 7 x 10(6) M-1 for the fully oxidized and 2 x 10(7) M-1 for the fully reduced enzyme) and distance information. Comparison of steady-state measurements obtained by absorbance and fluorescence spectroscopy in the presence and in the absence of cyanide show that it is the reduction of cytochrome a and/or CuA that triggers a conformational change: this increases the zinc cytochrome c to acceptor (most probably cytochrome a itself) distance by some 0.5 nm. Ligand binding to the fully oxidized or fully reduced enzyme leaves the extent of fluorescence quenching unchanged, whereas binding of cyanide to the half-reduced enzyme (a2+CuA+CuB2+-CN(-)-a3(3+)) enhances fluorescence emission relative to that for the fully reduced enzyme, implying further relative movement of donor and acceptor.  相似文献   

8.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

9.
Fluorescence of the single tryptophan residue in myelin basic protein (MBP) was excited directly at 295 nm (red-edge excitation) or at 278 nm which allows, in addition, indirect excitation by resonance energy transfer (RET) from any nearby tyrosine residues. Both red-edge excitation and the RET pathway were collisionally quenched by I- and acrylamide, but not by Cs+ or Co2+, implying that the fluorophore is in an exposed, positively charged environment. The quenching coefficients (K) for I- are 12-15 M-1 at both excitation wavelengths while coefficients for acrylamide are 15 M-1 at 278-nm and 8 M-1 at 295-nm excitation. Chloroheme, cyanoheme, and protoporphyrin IX also quench both red-edge excitation and the RET pathway with apparent quenching coefficients which are (2-5) X 10(4)-fold higher. This suggests that the mechanism of quenching now includes static in addition to collisional processes and thus that heme has a relatively high affinity for MBP. Scatchard analysis of the quenching suggests that chloroheme binds to MBP at two sites with dissociation constants (Kd) of 1.6 X 10(-8) and 2.0 X 10(-7) M and stoichiometries of 0.04:1 and 0.16:1, respectively. The hydrophobic fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalenesulfonate] [bis(ANS)] binds to MBP less avidly (Kd = 10(-7) M) and is rapidly displaced by chloroheme (Ki = 2 X 10(-8) M). The affinities of bis(ANS) and heme for MBP, along with the fluorescent amino acid quenching data, demonstrate that a subfraction of MBP molecules contain considerable structural specificity, implying stable long-range interactions in the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The interaction of amino acid amides with tRNAPhe was studied by measurements of the Wye base fluorescence. Binding of phenylalanine-, tyrosine- and tryptophan-amides leads to considerable quenching, whereas the amides of e.g. glycine and leucine do not induce quenching under the same conditions. Binding constants at 0.13 M salt - 100 M-1 for Phe-, 110 M-1 for Tyr- and 300 M-1 for Trp-amide - are about a factor of 6 higher than those evaluated from independent measurements for binding to simple single-stranded polynucleotides; the corresponding factor is 10 for double-stranded polynucleotides. Since the apparent enthalpy changes derived from measurements at different temperatures remains relatively low (-9 to -20 kJ/mol), the increased affinity appears to be mainly due to an increase of the entropy changes. Titration experiments performed in the presence of Mg2+ indicate cooperative interactions of the aromatic residues with the anticodon loop that are consistent with preferential binding to one of two loop conformations. Measurements of binding constants at different pH-values indicate the protonation of a tRNA residue in the tryptophanamide-tRNAPhe complex characterised by a pK value of about 7.0.  相似文献   

11.
Using physical techniques, circular dichroism and intrinsic and extrinsic fluorescence, the binding of divalent cations to soluble protein kinase C and their effects on protein conformation were analyzed. The enzyme copurifies with a significant concentration of endogenous Ca2+ as measured by atomic absorption spectrophotometry, however, this Ca2+ was insufficient to support enzyme activity. Intrinsic tryptophan fluorescence quenching occurred upon addition to the soluble enzyme of the divalent cations, Zn2+, Mg2+, Ca2+ or Mn2+, which was irreversible and unaffected by monovalent cations (0.5 M NaCl). Far ultraviolet (200-250 nm) circular dichroism spectra provided estimations of secondary structure and demonstrated that the purified enzyme is rich in alpha-helices (42%) suggesting a rather rigid structure. At Ca2+ or Mg2+ concentrations similar to those used for fluorescence quenching, the enzyme undergoes a conformational transition (42-24% alpha-helix, 31-54% random structures) with no significant change in beta-sheet structures (22-26%). Maximal effects on 1 microM enzyme were obtained at 200 microM Ca2+ or 100 microM Mg2+, the divalent cation binding having a higher affinity for Mg2+ than for Ca2+. The Ca2(+)-induced transition was time-dependent, while Mg2+ effects were immediate. In addition, there was no observed energy transfer for protein kinase C with the fluorescent Ca2(+)-binding site probe, terbium(III). This study suggests that divalent cation-induced changes in soluble protein kinase C structure may be an important step in in vitro analyses that has not yet been detected by standard biochemical enzymatic assays.  相似文献   

12.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The binding mechanism of Mg(2+) at the M3 site of human placental alkaline phosphatase was found to be a slow-binding process with a low binding affinity (K(Mg(app.)) = 3.32 mM). Quenching of the intrinsic fluorescence of the Mg(2+)-free and Mg(2+)-containing enzymes by acrylamide showed almost identical dynamic quenching constant (K(sv) = 4.44 +/- 0.09 M(-1)), indicating that there is no gross conformational difference between the M3-free and the M3-Mg(2+) enzymes. However, Zn(2+) was found to have a high affinity with the M3 site (K(Zn(app.)) = 0.11 mM) and was observed as a time-dependent inhibitor of the enzyme. The dependence of the observed transition rate from higher activity to lower activity (k(obs)) at different zinc concentrations resulted in a hyperbolic curve suggesting that zinc ion induces a slow conformational change of the enzyme, which locks the enzyme in a conformation (M3'-Zn) having an extremely high affinity for the Zn(2+) (K*(Zn(app.)) = 0.33 microM). The conformation of the M3'-Zn enzyme, however, is unfavorable for the catalysis by the enzyme. Both Mg(2+) activation and Zn(2+) inhibition of the enzyme are reversible processes. Structural information indicates that the M3 site, which is octahedrally coordinated to Mg(2+), has been converted to a distorted tetrahedral coordination when zinc ion substitutes for magnesium ion at the M3 site. This conformation of the enzyme has a small dynamic quenching constant for acrylamide (K(sv) = 3.86 +/- 0.04 M(-1)), suggesting a conformational change. Both Mg(2+) and phosphate prevent the enzyme from reaching this inactive structure. GTP plays an important role in reactivating the Zn-inhibited enzyme activity. We propose that, under physiological conditions, magnesium ion may play an important modulatory role in the cell for protecting the enzyme by retaining a favorable geometry of the active site needed for catalysis.  相似文献   

14.
The binding of substrates and the herbicide N-(phosphonomethyl)glycine (glyphosate) to enolpyruvoylshikimate-3-phosphate (EPSP) synthase was evaluated by stopped-flow and equilibrium fluorescence measurements. Changes in protein fluorescence were observed upon the binding of EPSP and upon the formation of the enzyme-shikimate 3-phosphate-glyphosate ternary complex; no change was seen with either shikimate 3-phosphate (S3P) or glyphosate alone. By fluorescence titrations, the dissociation constants were determined for the formation of the enzyme binary complexes with S3P (Kd,S = 7 +/- 1.2 microM) and EPSP (Kd,EPSP = 1 +/- 0.01 microM). The dissociation constant for S3P was determined by competition with EPSP or by measurements in the presence of a low glyphosate concentration. At saturating concentrations of S3P, glyphosate bound to the enzyme--S3P binary complex with a dissociation constant of 0.16 +/- 0.02 microM. Glyphosate did not bind significantly to free enzyme, so the binding is ordered with S3P binding first: (formula; see text) where S refers to S3P, G refers to glyphosate, and E.S.G. represents the complex with altered fluorescence. The kinetics of binding were measured by stopped-flow fluorescence methods. The rate of glyphosate binding to the enzyme--S3P complex was k2 = (7.8 +/- 0.2) X 10(5) M-1 s-1, from which we calculated the dissociation rate k-2 = 0.12 +/- 0.02 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
L D Faller 《Biochemistry》1990,29(13):3179-3186
TNP-ATP binds to the gastric H,K-ATPase with a 4.6-fold increase in fluorescence intensity and 10-nm blue shift that indicate a relatively hydrophobic protein environment. The fluorescence enhancement saturates and is compatible with binding to a single class of specific nucleotide sites with Kd less than 25 nM and N = 3.4 +/- 0.9 nmol mg-1. Cofactors of the H,K-ATPase affect the fluorescence enhancement. K+ causes a rapid fluorescence quench by binding to a single class of sites with Kd = 3 mM. Mg2+ rapidly and completely reverses the K+ quench and then causes a slow fluorescence quench. The maximum enhancement is approximately halved by either Mg2+ or K+ in titrations with both protein and fluorophore. Therefore, TNP-ATP reports changes in protein environment compatible with cofactor-induced changes in the conformation of the enzyme.  相似文献   

16.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

17.
A divalent cation electrode was used to measure the stability constants (association constants) for the magnesium and manganese complexes of the substrates for the NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) from pea stems. At an ionic strength of 26.5 mM and at pH 7.4 the stability constants for the Mg2+-isocitrate and Mg2+-NADP+ complexes were 0.85 +/- 0.2 and 0.43 +/- 0.04 mM-1 respectively and for the Mn2+-isocitrate and Mn2+-NADP+ complexes they were 1.25 +/- 0.07 and 0.75 +/- 0.09 mM-1 respectively. At the same ionic strength but at pH 6.0 the Mg2+-NADPH and Mn2+-NADPH complexes had stability constants of 0.95 +/- 0.23 and 1.79 +/- 0.34 mM-1 respectively. Oxalosuccinate and alpha-ketoglutarate do not form measureable complexes under these conditions. Saturation kinetics of the enzyme with respect to isocitrate and metal ions are consistent with the metal-isocitrate complex being the substrate for the enzyme. NADP+ binds to the enzyme in the free form. Saturation kinetics of NADPH and Mn2+ indicate that the metal-NADPH complex is the substrate in the reverse reaction. In contrast the pig heart enzyme appears to bind free NADPH and Mn2+. A scheme for the reaction mechanism is presented and the difference between the reversibility of the NAD+ and NADP+ enzyme is discussed in relation to the stability of the NADH and NADPH metal complexes.  相似文献   

18.
A Gafni 《Biochemistry》1979,18(8):1540-1545
Quenching of the fluorescence of ethenoadenine derivatives by iodide ions and by methionine was studied in solution and when the nucleotides were bound to several dehydrogenases. The fluorescence of epsilonADPR in neutral aqueous solution is dynamically quenched by both quenching agents. The quenching of free epsilonNAD+ by methionine was found to be predominantly static and was satisfactorily described to result from complex formation between quencher and dinucleotide. The rat constant for quenching by iodide of epsilonNAD+ in the ternary complex with LADH and pyrazole is comparable to that of free epsilonADPR or epsilonADP. it is concluded that the bound epsilon-adenine ring is partially exposed to the solvent. The opening, to the solvent, of the adenine binding site is not large enough to allow free methionine diffusion since the rate constant for quenching of bound coenzyme by this quenching agent is relatively small. The difference between the rate constants for quenching of free and enzyme bound nucleotide was used to evaluate the binding constants of epsilonADPR to GPDH, epsilonNAD+ to LDH, and oxalate to the LDH:epsilonNAD+ complex. This technique may prove to be particularly useful when the binding of a fluorescent ligand to a protein is not accompanied by significant changes in its fluorescence.  相似文献   

19.
Cod parvalbumin (isotype III) is a single tryptophan-containing protein. The fluorescence characteristics of this tryptophan residue (lambda em approximately 315 nm) suggest that it is buried from solvent and that it is located in an apolar core of the protein. Solute quenching studies of the tryptophan fluorescence of parvalbumin reveal dynamic quenching rate constants, kq, of 1.1 X 10(8) and 2.3 X 10(9) M-1 s-1 (at 25 degrees C) with acrylamide and oxygen, respectively, as quenchers. From temperature dependence studies, activation energies of 6.5 +/- 1.5 and 6.0 +/- 0.5 kcal/mol are found for acrylamide and oxygen quenching. The kq for acrylamide quenching is found to be relatively unchanged (+/- 10%) by an 8-fold increase in the bulk viscosity (glycerol/water mixture). These temperature and viscosity studies argue that the acrylamide quenching process involves a dynamic penetration of the quencher, facilitated by fluctuations in the protein's structure.  相似文献   

20.
Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range. The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg2+ binding first (Kd = 140 +/- 40 microM), are kcat = 105 +/- 2 s(-1) and P-pyr Km = 5 +/- 1 microM. PEP (slow substrate kcat = 2 x 10(-4) s(-1)), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 +/- 0.1 mM, 17 +/- 1 microM, and 210 +/- 10 microM, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (alpha/beta)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号