首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat adrenal mitochondria have an active rotenone-insensitive outer mitochondrial membrane NADH-semidehydroascorbate (NADH-SDA) reductase which supports cholesterol side chain cleavage at a rate equal to that supported by malate. Side chain cleavage activity supported by both of these electron donor systems is equally inhibited by cycloheximide. Catalase or butylated hydroxyanisole are required for the NADH-SDA reductase-supported cholesterol side chain cleavage. This requirement can be removed by briefly subjecting the mitochondrial preparations to -20 degrees C. Ascorbic acid alone or with malate is either inhibitory or has no effect on side chain cleavage activity. These observations demonstrate that outer mitochondrial membrane NADH-SDA reductase in rat adrenal functions to provide cytoplasmic reducing equivalents to intramitochondrial cytochrome P-450scc and provides a new explanation for the function of ascorbic acid in corticosteroidogenesis.  相似文献   

2.
Summary Adrenocortical mitochondrial cholesterol side chain cleavage reactions are regulated by the influence of pituitary ACTH. The mechanism of the stimulation involves adenyl cyclase, cAMP-dependent protein kinase, cholesterol esterase, and ribosomal labile protein synthesis. Through these reactions the stimulus reaches the mitochondrial side chain cleavage enzyme system. In this review article, the current implications on the stimulus transfer from the plasma membrane to the mitochondrial inner membrane are summarized. In particular the availability of cholesterol to P-450scc was discussed in terms of the distribution of cholesterol molecules in the membranes.  相似文献   

3.
In mammals, hydrocortisone synthesis from cholesterol is catalyzed by a set of five specialized enzymes, four of them belonging to the superfamily of cytochrome P-450 monooxygenases. A recombinant yeast expression system was recently developed for the CYP11B1 (P45011beta) enzyme, which performs the 11beta hydroxylation of steroids such as 11-deoxycortisol into hydrocortisone, one of the three mitochondrial cytochrome P-450 proteins involved in steroidogenesis in mammals. This heterologous system was used to test the potential interaction between CYP11B1 and CYP11A1 (P450scc), the mitochondrial cytochrome P-450 enzyme responsible for the side chain cleaving of cholesterol. Recombinant CYP11B1 and CYP11A1 were targeted to Saccharomyces cerevisiae mitochondria using the yeast cytochrome oxidase subunit 6 mitochondrial presequence fused to the mature form of the two proteins. In yeast, the presence of CYP11A1 appears to improve 11beta hydroxylase activity of CYP11B1 in vivo and in vitro. Fractionation experiments indicate the presence of the two proteins in the same membrane fractions, i.e. inner membrane and contact sites of mitochondria. Thus, yeast mitochondria provide interesting insights to study some molecular and cellular aspects of mammalian steroid synthesis. In particular, recombinant yeast should permit a better understanding of the mechanism permitting the synthesis of steroids (sex steroids, mineralocorticoids and glucocorticoids) with a minimal set of enzymes at physiological level, thus avoiding disease states.  相似文献   

4.
1. Low molecular weight fractions (mol. wt. 3500-10 000) prepared from cytosols of luteinized rat ovaries inhibited succinate-supported cholesterol side chain cleavage by intact ovarian mitochondria utilizing endogenous or exogenous sterol as substrate. 2. The low molecular weight fractions inhibited steroid secretion by collagenase-dispersed ovarian cells stimulated with lutropin or dibutyryl cyclic AMP. 3. Steroidogenesis by intact mitochondria incubated with NADPH was enhanced by the low molecular weight ovarian fraction, but cholesterol side chain cleavage carried out by sonicated mitochondria incubated with NADPH was unaffected. 4. Succinate-supported mitochondrial respiration was stimulated by the low molecular weight factor, apparently by uncoupling of oxidative phosphorylation. The uncoupling seems to be the mechanism by which steroid synthesis is inhibited. 5. The low molecular weight factor was heat-labile and not extracted by activated charcoal. Similar heat-labile material capable of inhibiting succinate-supported mitochondrial steroid synthesis was not found in low molecular weight fractions prepared from rat kidney, liver, spleen, brain, plasma and bovine corpus luteum. 6. Treatment of rats with cycloheximide 1 h before killing resulted in a reduction of inhibitory activity in ovarian low molecular weight cytosolic fractions. 7. We conclude that ovarian cytosols contain a low molecular weight factor, presumably a protein, which inhibits mitochondrial cholesterol side chain cleavage by uncoupling oxidative phosphorylation. The physiological function of this factor remains to be determined.  相似文献   

5.
18- and 11beta-Hydroxylation of deoxycorticosterone and side chain cleavage of cholesterol were studied in mitochondria and submitochondrial reconstituted systems prepared from rat and bovine adrenals. A mass fragmentographic technique was used that allows determination of hydroxylation of both exogenous and endogenous cholesterol. The following results were obtained. (1) Treatment of rats with excess potassium chloride in drinking fluid increased mitochondrial cytochrome P-450 as well as 18- and 11beta-hydroxylase activity in the adrenals. Cholesterol side chain cleavage was not affected. In the presence of excess adrenodoxin and adrenodoxin reductase, cytochrome P-450 isolated from potassium chloride-treated rats had higher 18- and 11beta-hydroxylase activity per nmol than cytochrome P-450 isolated from control rats. The stimulatory effects on 18- and 11beta-hydroxylation were of similar magnitude. (2) Long-term treatment with ACTH increased cholesterol side chain cleavage in the adrenals but had no effect on 18- and 11beta-hydroxylase activity. The amount of cytochrome P-450 in the adrenals was not affected by the treatment. It was shown with isolated mitochondrial cytochrome P-450 in the presence of excess adrenodoxin and adrenodoxin reductase that the effect of ACTH was due to increase of side chain cleavage activity per nmol cytochrome P-450. Side chain cleavage of exogenous cholesterol was affected more than that of endogenous cholesterol. (3) Gel chromatography of soluble cytochrome P-450 prepared from rat and bovine adrenal mitochondria yielded chromatographic fractions having either a high 18- and 11beta-hydroxylase activity and a low cholesterol side chain cleavage activity or the reverse. The ratio between 18- and 11beta-hydroxylase activity was approximately constant, provided the origin of cytochrome P-450 was the same. (4) Addition of progesterone to incubations of deoxycorticosterone with soluble or insoluble rat adrenal cytochrome P-450 competitively inhibited 18- and 11beta-hydroxylation of deoxycorticosterone to the same degree. Addition of deoxycorticosterone competitively inhibited 11beta-hydroxylation of progesterone with the same system. Progesterone was not 18-hydroxylated by the system. From the results obtained, it is concluded that 18- and 11beta-hydroxylation have similar properties and that the binding site for deoxycorticosterone is similar or identical in the two hydroxylations. The possibility that the same specific type of cytochrome P-450 is responsible for both 18- and 11beta-hydroxylation of deoxycorticosterone is discussed.  相似文献   

6.
Intramitochondrial cholesterol transfer   总被引:8,自引:0,他引:8  
Cholesterol serves as the initial substrate for all steroid hormones synthesized in the body regardless of the steroidogenic tissue or final steroid produced. The first steroid formed in the steroidogenic pathway is pregnenolone which is formed by the excision of a six carbon unit from cholesterol by the cytochrome P450 side chain cleavage enzyme system which is located in the inner mitochondrial membrane. It has long been known that the regulated biosynthesis of steroids is controlled by a cycloheximide sensitive factor whose function is to transfer cholesterol from the outer to the inner mitochondrial membrane, thus, the identity of this factor is of great importance. A candidate for the regulatory factor is the mitochondrial protein, the steroidogenic acute regulatory (StAR) protein. Cloning and sequencing of the StAR cDNA indicated that it was a novel protein, and transient transfections with the cDNA for the StAR protein resulted in increased steroid production in the absence of stimulation. Mutations in the StAR gene cause the potentially lethal disease congenital lipoid adrenal hyperplasia, a condition in which cholesterol transfer to the cytochrome P450 side chain cleavage enzyme, P450scc, is blocked, filling the cell with cholesterol and cholesterol esters. StAR knockout mice have a phenotype which is essentially identical to the human condition. The cholesterol transferring activity of StAR has been shown to reside in the C-terminal part of the molecule and a protein sharing homology with a region in the C-terminus of StAR has been shown to display cholesterol transferring capacity. Recent evidence has indicated that StAR can act as a sterol transfer protein and it is perhaps this characteristic which allows it to mobilize cholesterol to the inner mitochondrial membrane. However, while it appears that StAR is the acute regulator of steroid biosynthesis via its cholesterol transferring activity, its mechanism of action remains unknown.  相似文献   

7.
Highly purified beef adrenal cytochrome P-450 specific for cholesterol side chain cleavage (P-450-scc) has been reconstituted with sonicated vesicles containing cholesterol and either dimyristoyl phosphatidylcholine (DMPC) or dioleoyl phosphatidylcholine (DOPC). When cholesterol was present in DMPC vesicles at 1:15 molar ratio, cardiolipin and L-alpha-phosphatidylinositol 4-monophosphate (DPI) increased side chain cleavage by at least 5-fold (0.7 min-1-3.5 min-1). In DOPC vesicles, a smaller increase was observed (2.8 min-1-5.0 min-1). Activator phospholipids increased the rate of transference of cholesterol both to and from the cytochrome when, respectively, cholesterol-free P-450scc and cholesterol-P-450scc complex are combined with either DMPC or DOPC vesicles. Transfer of cholesterol to and from cytochrome P-450 occurred with similar first order rate constants and was also independent of the concentrations of cholesterol vesicles and P-450. It is suggested that transfer in both directions is limited by the rate of insertion of P-450scc into the membrane. Phospholipid stimulatory effects for both cholesterol transfer and for activation of side chain cleavage occurred with the same ranking, even though cholesterol transfer, following reconstitution, was 5-10 times slower than the turnover of side chain cleavage. DPI increased Vmax for side chain cleavage in both DMPC and DOPC vesicles to the same rate (12 min-1) without effect on the Km for cholesterol, while cardiolipin both produced a similar increase in Vmax and decreased Km (cholesterol). This activation by DPI is attributed to more favorable incorporation of P-450scc in these membranes and is consistent with previously reported effects of acidic phospholipids on other mitochondrial proteins.  相似文献   

8.
This study compares the side-chain cleavage of aqueous suspensions of cholesterol sulfate with the side-chain cleavage of cholesterol sulfate which is incorporated into phospholipid vesicles. Three different cholesterol desmolase systems are examined: the membrane-bound cholesterol side-chain cleavage system present in inner mitochondrial membranes isolated from bovine adrenal mitochondria; a soluble, lipid-depleted, reconstituted side-chain cleavage system prepared from cytochrome P-450scc, adrenodoxin and adrenodoxin reductase; a membrane associated side-chain cleavage system prepared by adding phospholipid vesicles, prepared from adrenal mitochondrial, to the reconstituted system. Soluble cholesterol sulfate, in low concentration, is a good substrate for the lipid-depleted reconstituted side chain cleavage system. However, at concentrations above 2 microM, in the absence of phospholipids, the sterol sulfate appears to bind at a non-productive site on cytochrome P-450scc which leads to substrate inhibition. Phospholipids, while inhibiting the binding of cholesterol sulfate to the cytochrome, also appear to prevent non-productive binding of the sterol sulfate to the cytochrome. Thus the addition of phospholipids to the lipid-depleted enzyme system leads to an activation of side-chain cleavage of high concentrations of the sterol sulfate. Soluble cholesterol sulfate is a good substrate for both the native and reconstituted membrane-bound systems and no substrate inhibition is observed when the membrane bound enzyme systems are employed in the assay of side-chain activity. However, the cleavage of cholesterol sulfate, which is incorporated into phospholipid vesicles, by both membrane bound enzyme systems appears to be competitively inhibited by the phospholipids of the vesicles. The results of this study suggest that the regulation of the side-chain cleavage of cholesterol sulfate may be entirely different than the regulation of the side-chain cleavage of cholesterol, if cholesterol sulfate exists intracellularly as a soluble non-complexed substrate. If, on the other hand, cholesterol sulfate is present in the cell in lipid droplets as a complex with phospholipids, its metabolism may be under the same constraints as the side-chain cleavage of cholesterol.  相似文献   

9.
10.
The transfer of cholesterol to mitochondria, which might involve the phosphorylation of proteins, is the rate-limiting step in human placental steroidogenesis. Protein kinase A (PKA) activity and its role in progesterone synthesis by human placental mitochondria were assessed in this study. The results showed that PKA and phosphotyrosine phosphatase D1 are associated with syncytiotrophoblast mitochondrial membrane by an anchoring kinase cAMP protein-121. The 32P-labeled of four major proteins was analyzed. The specific inhibitor of PKA, H89, decreased progesterone synthesis in mitochondria while in mitochondrial steroidogenic contact sites protein-phosphorylation was diminished, suggesting that PKA plays a role in placental hormone synthesis. In isolated mitochondria, PKA activity was unaffected by the addition of cAMP suggesting a constant activity of this kinase in the syncytiotrophoblast. The presence of PKA and phosphotyrosine phosphatase D1 anchored to mitochondria by an anchoring kinase cAMP protein-121 indicated that syncytiotrophoblast mitochondria contain a full phosphorylation/dephosphorylation system.  相似文献   

11.
The location of hexokinase at the surface of brain mitochondria was investigated by electron microscopy using immuno-gold labelling techniques. The enzyme was located where the two mitochondrial limiting membranes were opposed and contact sites were possible. Disruption of the outer membrane by digitonin did not remove bound hexokinase and creatine kinase from brain mitochondria, although the activity of outer membrane markers and adenylate kinase decreased, suggesting a preferential location of both enzymes in the contact sites. In agreement with that, a membrane fraction was isolated from osmotically lysed rat brain mitochondria in which hexokinase and creatine kinase were concentrated. The density of this kinase-rich fraction was specifically increased by immuno-gold labelling of hexokinase, allowing a further purification by density gradient centrifugation. The fraction was composed of inner and outer limiting membrane components as shown by the specific marker enzymes, succinate dehydrogenase and NADH-cytochrome-c-oxidase (rotenone insensitive). As reported earlier for the enriched contact site fraction of liver mitochondria the fraction from brain mitochondria contained a high activity of glutathione transferase and a low cholesterol concentration. Moreover, the contacts showed a higher Ca2+ binding capacity in comparison to outer and inner membrane fractions. This finding may have regulatory implications because glucose phosphorylation via hexokinase activated the active Ca2+ uptake system and inhibited the passive efflux, resulting in an increase of intramitochondrial Ca2+.  相似文献   

12.
Utilizing site-directed mutagenesis and an Escherichia coli expression system for bovine cholesterol side chain cleavage cytochrome P450, lysine residues at 377 and 381 are found to play crucial roles in binding bovine adrenodoxin, required for transfer of electrons to mitochondrial P450s. These lysine residues are conserved among mitochondrial P450s and have been implicated previously by chemical modification studies as being important for adrenodoxin binding. In the present study, site-directed mutagenesis producing either neutral or positive amino acids at 377 or 381 has no effect on the structure of side chain cleavage cytochrome P450 as determined spectrally or on the enzymatic conversion of cholesterol to pregnenolone. However, the estimated Ks of adrenodoxin binding is increased approximately 150-600-fold depending on the particular mutation. Therefore these conserved positively charged residues in mitochondrial P450s are the key sites for adrenodoxin binding which is electrostatic in nature.  相似文献   

13.
The rate of oxidation of cholesterol and its analogues to pregnenolone (3beta-hydroxypregn-5-en-20-one) by various mitochondrial preparations was measured. Sterols with the cholest-5-en-3beta-ol ring system and saturated side chains of different lengths were converted into pregnenolone rat rates similar to that of cholesterol. This marked lack of mitochondrial specificity towards the steroid side chains is in direct contrast with the rat liver microsomal cholesterol 7alpha-hydroxylase, which has a high specificity for the side chain. Steroids that retain the ring system, but contain hydroxyl groups at various points in the side chain, are converted into pregnenolone at rates three to eight times higher than in cholesterol. The results are discussed with reference to current ideas on the mechanism of the side-chain cleavage of cholesterol. The results are discussed with reference to current ideas on the mechanism of the side-chain cleavage of cholesterol.  相似文献   

14.
This study demonstrates that the steroidogenic acute regulatory protein-related lipid transfer (START) domain-containing protein, MLN64, participates in intracellular cholesterol trafficking. Analysis of the intracellular itinerary of MLN64 and MLN64 mutants tagged with green fluorescent protein showed that the N-terminal transmembrane domains mediate endocytosis of MLN64 from the plasma membrane to late endocytic compartments. MLN64 constitutively traffics via dynamic NPC1-containing late endosomal tubules in normal cells; this dynamic movement was inhibited in cholesterol-loaded cells, and MLN64 is trapped at the periphery of cholesterol-laden lysosomes. The MLN64 START domain stimulated free cholesterol transfer from donor to acceptor mitochondrial membranes and enhanced steroidogenesis by placental mitochondria. Expression of a truncated form of MLN64 (DeltaSTART-MLN64), which contains N-terminal transmembrane domains but lacks the START domain, caused free cholesterol accumulation in lysosomes and inhibited late endocytic dynamics. The DeltaSTART-MLN64 dominant negative protein was located at the surface of the cholesterol-laden lysosomes. This dominant negative mutant suppressed steroidogenesis in COS cells expressing the mitochondrial cholesterol side chain cleavage system. We conclude that MLN64 participates in mobilization and utilization of lysosomal cholesterol by virtue of the START domain's role in cholesterol transport.  相似文献   

15.
The oxidation of the side chain of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid (DHCA) into chenodeoxycholic acid has been studied in subcellular fractions of rat liver. The product was separated from the substrate by high pressure liquid chromatography and identified by gas-liquid chromatography-mass spectrometry. The highest specific rate of conversion was found in the heavy (M) and the light (L) mitochondrial fractions with the highest enrichment in the L fraction. Washing the M fraction reduced the side chain cleavage activity by 90%. The peroxisomal marker enzyme urate oxidase was reduced to the same extent. The activity found in the M fraction may thus be due to peroxisomal contamination. After centrifugation of the L fraction on a Nycodenz density gradient, the highest specific activity for side chain cleavage of DHCA (31 nmol X mg-1 X h-1) was found in the fraction with the highest peroxisomal marker enzyme activity. This fraction also catalyzed conversion of 3 alpha,7 alpha,12 alpha-5 beta-cholestanoic acid (THCA) into cholic acid at the highest rate (32 nmol X mg-1 X h-1). The peroxisomal oxidation of DHCA into chenodeoxycholic acid required the presence of ATP, CoA, Mg2+, and NAD in the incubation medium. The reaction was not inhibited by KCN. It is concluded that rat liver peroxisomes contain enzymes able to catalyze the cleavage of the side chain of both DHCA and THCA. The enzymes involved are similar to, but not necessarily identical to, those involved in the peroxisomal beta-oxidation of fatty acids.  相似文献   

16.
The first and rate-limiting step of steroidogenesis is the transfer of cholesterol from the outer mitochondrial membrane to the inner membrane where it is converted to pregnenolone by cytochrome P450 side-chain cleavage (P450scc). This reaction is modulated in the gonads and adrenals by the steroidogenic acute regulatory protein (StAR), however, the mechanism used by StAR is not understood. The outer and inner mitochondrial membranes are joined at contact sites that are thought to be held in place by protein complexes that bridge the two membranes. While it is generally accepted that proteins are imported into the mitochondrion via contact sites, it is not clear whether cholesterol takes the same conduit to the inner membrane. Strategies to combat diseases caused by interrupted cholesterol transfer will rely on a full understanding of the steroidogenic mechanism. The challenge for the future is to determine whether StAR relies on the molecular architecture that spans the mitochondrial intermembrane space to deliver its cargo.  相似文献   

17.
Heterologous expression in yeast of mCYP11A1 fusions with different topogenic signals of yeast mitochondrial proteins for artificial channeling to different translocases of the inner membrane was used to gain insight in the mechanism of its topogenesis in mitochondria. To ensure insertion of the CYP11A1 domain into the inner mitochondrial membrane during the process of translocation, topogenic sequences containing transmembrane segments of Bcs1p(1-83), DLD(1-72), and full-sized AAC protein were used when constructing modified forms of CYP11A1, and the Su9(1-112) addressing signal was included to stimulate membrane insertion of CYP11A1 after its translocation to the matrix. Alternatively, to promote slippage of the hybrid molecules into the matrix, the hybrid of mCYP11A1 with the precursor of steroidogenic mitochondria matrix protein adrenodoxin (preAd) was designed. The extra sequences used for intramitochondrial sorting of CYP11A1 apparently ensured predicted topology of hybrid molecules in yeast mitochondria. All of the addressing sequences, containing transmembrane domains, provided effective insertion of the hybrid proteins AAC-mCYP11A1, Bcs1p(1-83)-mCYP11A1, DLD(1-72)-mCYP11A1 and Su9(1-116)-mCYP11A1 into the inner membrane. preAd-mCYP11A1 hybrid molecules were shown to be translocated across the inner membrane and tightly associated with the membrane on its matrix side but not membrane inserted. Measuring specific activities of hybrid proteins in the mitochondrial fractions upon addition of Ad and AdR showed that the hybrids predetermined for cotranslocational insertion of CYP11A1 into the inner membrane were more active in the reaction of cholesterol side-chain cleavage than those destined for insertion on the matrix side of the IM, the Ad-mCYP11A1 hybrid demonstrating only residual enzyme activity. The data obtained reinforce the proposal that complete transfer of the polypeptide chain into the matrix is not a necessary stage in its topogenesis, but rather persistent interaction of the polypeptide chain with the membrane during the process of translocation is of importance for heme binding, folding and membrane insertion.  相似文献   

18.
Cytochrome P450scc and adrenodoxin are redox proteins of the electron transfer chain of the inner mitochondrial membrane steroid hydroxylases. In the present work site-directed mutagenesis of the charged residues of cytochrome P450scc and adrenodoxin, which might be involved in interaction, was used to study the nature of electrostatic contacts between the hemeprotein and the ferredoxin. The target residues for mutagenesis were selected based on the theoretical model of cytochrome P450scc-adrenodoxin complex and previously reported chemical modification studies of cytochrome P450scc. In the present work, to clarify the molecular mechanism of hemeprotein interaction with ferredoxin, we constructed cytochrome P450scc Lys267, Lys270, and Arg411 mutants and Glu47 mutant of adrenodoxin and analyzed their possible role in electrostatic interaction and the role of these residues in the functional activity of the proteins. Charge neutralization at positions Lys267 or Lys270 of cytochrome P450scc causes no significant effect on the physicochemical and functional properties of cytochrome P450scc. However, cytochrome P450scc mutant Arg411Gln was found to exhibit decreased binding affinity to adrenodoxin and lower activity in the cholesterol side chain cleavage reaction. Studies of the functional properties of Glu47Gln and Glu47Arg adrenodoxin mutants indicate that a negatively charged residue in the loop covering the Fe2S2 cluster, being important for maintenance of the correct architecture of these structural elements of ferredoxin, is not directly involved in electrostatic interaction with cytochrome P450scc. Moreover, our results indicate the presence of at least two different binding (contact) sites on the proximal surface of cytochrome P450scc with different electrostatic input to interaction with adrenodoxin. In the binary complex, the positively charged sites of the proximal surface of cytochrome P450scc well correspond to the two negatively charged sites of adrenodoxin: the "interaction" domain site and the "core" domain site.  相似文献   

19.
The phospholipid composition and the phospholipase C activity of envelope fractions of Escherichia coli B were determined with special consideration of fractions containing sites at which an attachment of inner and outer membranes had been observed in the electron microscope (Int.M). Phosphoglycerides labeled with [14C]palmitic acid and [3H]serine were extracted from membrane fractions and identified by two-dimensional thin-layer chromatography. The amount of phosphatidylethanolamine was highest in the outer membrane, whereas the amounts of phosphatidylglycerol and cardiolipin were highest in the inner membrane. The Int.M fractions were observed to have concentrations of phospholipids intermediate to those of the inner and outer membranes. This result supports the assumption that a concentration gradient of inner membrane-outer membrane lipids might exist at the membrane contact sites. The highest phospholipase C activity was detected in the inner membrane and Int.M fractions. The presence of phospholipase C and other lipolytic enzymes in the Int.M fractions suggests a possible involvement of adhesion sites in lipid metabolism, adding a further set of activities to the function of these domains.  相似文献   

20.
Human placental mitochondrial cytochrome P-450 was purified to electrophoretic homogeneity by hydrophobic, anion exchange and cation exchange column chromatography. The specific content of the purified protein was 15.7 nmol/mg protein and it showed a single band mol. wt 48,000 D in SDS-gel electrophoresis. When reconstituted with bovine adrenal adrenodoxin reductase and adrenodoxin it converted cholesterol to pregnenolone (cholesterol side-chain cleavage activity, CSCC) at the rate of 1 pmol/min/pmol P-450. Antibodies against the purified protein were raised in rabbits. Inhibition studies demonstrated 85% inhibition of placental CSCC activity at an antibody/protein ratio of 10:1. Placental microsomal aromatase activity was inhibited by 47% at the same antibody/protein ratio. The antibody inhibited bovine mitochondrial CSCC activity by 87% at the same antibody/protein ratio. Placental microsomal 7-ethoxycoumarin O-deethylase, aryl hydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase activities were not significantly inhibited by the antibody. The results indicate that the purified protein catalyzes cholesterol side-chain cleavage reaction, human placental microsomal aromatase and bovine adrenal mitochondrial P-450scc may share common antigenic determinants with placental P-450scc, but the placental microsomal xenobiotic-metabolizing cytochrome(s) is (are) distinctly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号