首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Aim I analysed distributional and phylogenetic information on weevils (Coleoptera: Curculionidae) from the Falklands, and integrated it with molecular, palaeontological and geological information to infer a geobiotic scenario. Location Falkland Islands (Islas Malvinas). Methods The panbiogeographical analysis was based on data on 23 Falkland species and their related taxa from southern South America. For the cladistic biogeographical analysis I analysed six weevil taxa for which phylogenetic hypotheses are available (the generic groups Cylydrorhinus, Strangaliodes and Falklandius, and the genera Antarctobius, Germainiellus and Puranius). Results from this analysis were compared with previous regionalizations. Cenocrons (sets of taxa that share the same biogeographical history) were identified by considering temporal information provided by fossils and molecular clocks. Finally, a geobiotic scenario was proposed by integrating the available information. Results Six generalized tracks were detected: Maule–Valdivian forests, Magellanic forest, Magellanic moorland, Falkland Islands, Magellanic forest–Magellanic moorland, and Magellanic forest–Falkland Islands. A node was identified in the Magellanic forest, based on the overlap of two generalized tracks. A single general area cladogram was obtained, implying the following sequence: (Magellanic moorland (Maule–Valdivian forests (Magellanic forest, Falkland Islands))). The Falklands are classified here as a biogeographical province in the Austral realm, Andean region and Subantarctic subregion. Falkland weevils seem to belong to a single Subantarctic cenocron. The sequence of events deduced implies the following steps: development of the Subantarctic biota in southern South America, arrival of the Falkland crustal block from South Africa in the Early Cretaceous, geodispersal of the Subantarctic cenocron from southern South America to the Falklands during the Early Oligocene, vicariance of the Magellanic moorland, vicariance of the Maule–Valdivian forests, and final vicariance between the Magellanic forest and the Falkland Islands. Main conclusions The biotic components identified support the connection of the Falkland weevils with the Magellanic forest. Falkland weevils belong to a single cenocron, dated to at least the Early Oligocene, when geodispersal from southern South America may have occurred. An older African cenocron may have been replaced completely by the Subantarctic one when the proto‐Falklands made contact with the Patagonian continental shelf. A geobiotic scenario implying vicariance events related to sea‐level variations could explain the distributional patterns analysed herein.  相似文献   

2.
Aim To address the biogeographical enigma of why guanacos (Lama guanicoe) are in the Falkland Islands we investigated the following questions: (1) What was the origin of the introduced guanacos? (2) What were the initial population sizes? (3) Why are they found only on one island? and (4) Who was John Hamilton and what role did he play? Location The Falkland Islands are located in the South Atlantic Ocean 600 km east of Patagonia at the southern end of South America. While dominated by East and West Falkland Islands, the archipelago is composed of some 750 islands. Sedge and Staats Islands, two small outlying islands of West Falkland, are the focus of this paper. Methods Historical information was collected from known relevant documents housed at the Falkland Islands Government Archives in Stanley, and personal interviews conducted with past and present residents of West Falklands. Research expeditions were made to Staats Island in 1999, 2002 and 2003 to assess the guanaco population size, distribution and social structure. Results Guanacos were unsuccessfully introduced in 1862 to East Falkland south of Mt Pleasant where Prince Alfred hunted them in 1871. John Hamilton, Scottish immigrant to the Falklands and Patagonia of southern Argentina and Chile, was the driving force in the introduction of guanacos from the region of Rio Gallegos, Argentina during the 1930s. The guanaco was one of several wildlife species he introduced, however, only the guanaco, Patagonia grey fox (Dusicyon griseus) and perhaps the sea otter (Lutra felina) survive. Hamilton's acting agent, Jimmy Miller, imported four shipments totalling 26 guanacos from 1934 to 1939. In 1934 the Falkland Government authorized Miller to introduce guanacos to Sedge Island, all 11 of which disappeared. Whether intentional or accidental, 15 guanacos were taken to Staats Island, an islet of 500 ha on the western edge of the archipelago. Historically, guanacos are unexpected on Staats Island because documentation authorizing their introduction is unknown. Guanaco numbers have fluctuated widely on Staats Island for 65 years primarily due to culling. In 1959 the population was dangerously close to extirpation, but today 400 thrive there. A severely reduced gene pool and genetic bottlenecking were suggested by recent field studies, revealing preliminary evidence of deleterious consequences of inbreeding. Main conclusions John Hamilton, spirited and visionary Scottish immigrant to the Falklands in the early 1880s, was responsible for the introduction of guanacos into the Falkland Islands. While there are some gaps in the historical events, the enigma of how and why guanacos were introduced to a single island in the South Atlantic Ocean is understood. Today, Staats Island, as a closed system, is a rare natural experiment in progress. It offers unique opportunities for addressing advanced questions in ungulate population, behavioural and genetic ecology. The population potentially also represents breeding stock for farming the guanaco's highly valuable wool on other islands. Thus, among his many efforts to practice land stewardship and promote economic diversity through the introduction of Patagonian wildlife, a remaining legacy of John Hamilton to the Falkland Islands is unmistakably the guanacos of Staats Island.  相似文献   

3.
Aim  To determine patterns in diversity of a major Antarctic plant species, including relationships of Antarctic populations with those outside the Antarctic zone.
Location  Antarctic Peninsula, Maritime Antarctica, sub-Antarctic islands, Falkland Islands and South America.
Methods  Amplified fragment length polymorphisms (AFLPs) and chloroplast sequences were used to study patterns of genetic diversity in Antarctic hairgrass ( Deschampsia antarctica Desv.) and the genetic relationships between populations over its distribution range. Thirty-eight populations were sampled from a large part of the distribution of D. antarctica , and additionally, herbarium specimens were included for areas from which we could not obtain fresh samples.
Results  A gradient in AFLP diversity was observed going from the Falklands southwards into the Antarctic. This gradient in diversity was also observed within the Antarctic Peninsula: diversity was lower further south. Diversity in the chloroplast genome of D. antarctica was low. Only three chloroplast haplotypes were found, each with a strong regional distribution.
Main conclusions  The phylogenetic construction of AFLP marker frequencies in meta-populations of D. antarctica supports a stepping-stone model of colonization, whereby gene flow mainly occurs between neighbouring populations. It is concluded that long-distance gene flow is very limited in D. antarctica . A very low diversity was found in the sub-Antarctic islands in the Indian Ocean, indicating that these populations have experienced a recent evolutionary bottleneck.  相似文献   

4.
The Southern Hemisphere has traditionally been considered as having a fundamentally vicariant history. The common trans-Pacific disjunctions are usually explained by the sequential breakup of the supercontinent Gondwana during the last 165 million years, causing successive division of an ancestral biota. However, recent biogeographic studies, based on molecular estimates and more accurate paleogeographic reconstructions, indicate that dispersal may have been more important than traditionally assumed. We examined the relative roles played by vicariance and dispersal in shaping Southern Hemisphere biotas by analyzing a large data set of 54 animal and 19 plant phylogenies, including marsupials, ratites, and southern beeches (1,393 terminals). Parsimony-based tree fitting in conjunction with permutation tests was used to examine to what extent Southern Hemisphere biogeographic patterns fit the breakup sequence of Gondwana and to identify concordant dispersal patterns. Consistent with other studies, the animal data are congruent with the geological sequence of Gondwana breakup: (Africa(New Zealand(southern South America, Australia))). Trans-Antarctic dispersal (Australia <--> southern South America) is also significantly more frequent than any other dispersal event in animals, which may be explained by the long period of geological contact between Australia and South America via Antarctica. In contrast, the dominant pattern in plants, (southern South America(Australia, New Zealand)), is better explained by dispersal, particularly the prevalence of trans-Tasman dispersal between New Zealand and Australia. Our results also confirm the hybrid origin of the South American biota: there has been surprisingly little biotic exchange between the northern tropical and the southern temperate regions of South America, especially for animals.  相似文献   

5.
Aim The aim of this study is to investigate areas of endemism within the distribution of Oswaldella species in the Southern Ocean, thereby testing previous hypotheses and proposing alternative scenarios for Antarctic evolution. Location Southern Ocean, Antarctic and sub-Antarctic waters of southern South America. Methods We prepared a database for the 31 currently known species of the Antarctic genus Oswaldella, which includes geographical locations gathered from published taxonomic studies as well as materials from museums and expeditions. A parsimony analysis of endemicity (PAE) was used to test hypotheses of distribution patterns. Results Four areas of endemism are hypothesized: southern South America, two high Antarctic areas (eastern and western) and a larger area, mainly in western Antarctica at lower latitudes and including insular areas (but not the Balleny Islands). Main conclusions The results support, in part, previous hypotheses for the Southern Ocean region, while providing more detailed resolution. The areas of endemism may reflect both historical and ecological processes that influenced the Antarctic biota. The Magellanic area reflects the well-known affinities of the Antarctic biota with that of South America and may be a consequence of dispersal through deeper (and colder) waters, followed by speciation. The second area, the largest one, encompasses most of the insular faunas and may also be associated with deeper waters formed since 43 Ma. The third area may be explained by the development of seaways in the circum-Antarctic region beginning 50 Ma. Finally, the fourth zone, with a very poor fauna, coincides with the opening of the Tasman Strait and the formation of the Australo-Antarctic Gulf, associated with a minor wind-driven current.  相似文献   

6.
Towards a generalized biogeography of the Southern Ocean benthos   总被引:1,自引:0,他引:1  
Aim To investigate whether the biogeographical regions proposed by J. W. Hedgpeth and widely adopted by other authors hold true, are an oversimplification or with further data might show a unified Antarctic province. Location Southern Hemisphere. Methods The distributions of 1318 species of bivalves, 4656 species of gastropods, 1465 species of cheilostome and 167 species of cyclostome bryozoans were analysed for 29 regions in the Southern Hemisphere, including South American, South African, Tasmanian, New Zealand, sub‐Antarctic and Antarctic regions. We present data on species richness, rates of endemism, patterns of radiation, faunal similarities and multivariate biogeographical analyses. Results The most striking pattern to emerge from our data set of species counts per region was a strong east–west hemispheric asymmetry, with high species numbers in New Zealand, Tasmania and South Africa and low numbers in South America. In contrast, no difference was found in richness between the east and west parts of the Southern Ocean. We compared findings in our model taxa with published data on ascidians, cephalopods and pycnogonids. Further evidence of strong faunal links between the Antarctic and South America is reported in this study, although we found little evidence for a biogeographical relationship between the Antarctic or South America and New Zealand/Tasmania. Strong evidence exists for a long‐term influence of the Antarctic Circumpolar Current upon the distribution of Southern Ocean benthos. This is demonstrated by the reduced prevalence of South American species in the Antarctic and sub‐Antarctic with increasing distance from South America in the direction of the current. Three of our four study taxa (bivalves, cheilostomes and cyclostomes) show the Southern Ocean as a ‘single functional unit’ with no evidence for a biogeographical split between east and west. Main conclusions Unlike the biogeographical schemes previously proposed, we show that biogeographical regions in the Southern Ocean differ depending upon the class of animals being considered. Despite this we suggest that some general rules are viable, including species endemism rates of around 50%, a single Antarctic province and a definite distinction between the sub‐Antarctic islands influenced by South America and those of New Zealand.  相似文献   

7.
Abstract

The Southern Cone of South America and the adjacent regions of the South Atlantic and South Pacific Oceans, as well as the opposite regions of the Antarctic, present some difficult legal, political, economic, and military problems. As the tip of the Southern Cone has been conflict prone, the political and military interests of Argentina and Chile have tended to predominate. The 1984 Argentine‐Chilean Treaty of Peace and Friendship was a significant achievement in conflict resolution, and could lead to greater economic, political and even military cooperation between the two states. Nonetheless, the general area at the tip of the Southern Cone remains conflict prone as evidenced in part by the conflicts over the Falklands/Malvinas Islands, the Beagle Channel, the Drake Passage, and the Antarctic.  相似文献   

8.
'The scattered islands of the southern, cold ocean have clear affinities with one another . . . They are the basis for my Insulantarctica province.'
Udvardy, 1987, p. 190
Analyses of the distributional patterns of weevils (Coleoptera: Curculionoidea) from several Subantarctic islands, namely, Campbell, Auckland, Snares, Antipodes, Chatham, Falklands, Tierra del Fuego, Tristan da Cunha, Inaccessible, Nightingale, Gough, Marion, Prince Edward, Crozet, Kerguelen, and Heard, as well as South America and New Zealand, were carried out in order to determine their historical relationships, and to test the validity of Udvardy's (1987 ) Insulantarctica province. Three parsimony analyses of endemicity (PAE) considering (a) only species, (b) only supraspecific taxa, and (c) species and supraspecific taxa together, were undertaken. The following four groups emerged from the analyses: (1) New Zealand with the Snares, Auckland, Campbell, and Chatham Is., where New Zealand is the sister area to the Chatham Is., and the Auckland Is. are the sister area to Campbell I.; (2) South America with the Falkland Is. and Tierra del Fuego, where South America and Tierra del Fuego together are the sister area to the Falkland Is.; (3) Tristan da Cunha-Gough group, with the islands following the sequence Gough, Tristan da Cunha, Inaccessible, and Nightingale Is.; and (4) Kerguelen, Heard, Crozet, Marion, and Prince Edward Is., with Kerguelen and Heard Is. being sister areas, and Marion and Prince Edward Is. together being the sister area to the Crozet Is. It is concluded that the weevil fauna does not support the existence of an Insulantarctica province; the similarities among the different Subantarctic islands are due more to similar environmental conditions rather than to a common history.  相似文献   

9.
Island formation is a key driver of biological evolution, and several studies have used geological ages of islands to calibrate rates of DNA change. However, many islands are home to “relict” lineages whose divergence apparently pre‐dates island age. The geologically dynamic New Zealand (NZ) archipelago sits upon the ancient, largely submerged continent Zealandia, and the origin and age of its distinctive biota have long been contentious. While some researchers have interpreted NZ's biota as equivalent to that of a post‐Oligocene island, a recent review of genetic studies identified a sizeable proportion of pre‐Oligocene “relict” lineages, concluding that much of the biota survived an incomplete drowning event. Here, we assemble comparable genetic divergence data sets for two recently formed South Pacific archipelagos (Lord Howe; Chatham Islands) and demonstrate similarly substantial proportions of relict lineages. Similar to the NZ biota, our island reviews provide surprisingly little evidence for major genetic divergence “pulses” associated with island emergence. The dominance of Quaternary divergence estimates in all three biotas may highlight the importance of rapid biological turnover and new arrivals in response to recent climatic and/or geological disturbance and change. We provide a schematic model to help account for discrepancies between expected versus observed divergence‐date distributions for island biotas, incorporating the effects of both molecular dating error and lineage extinction. We conclude that oceanic islands can represent both evolutionary “cradles” and “museums” and that the presence of apparently archaic island lineages does not preclude dispersal origins.  相似文献   

10.
Aim To provide a detailed biogeography of the diatom genus Stauroneis in the Antarctic and sub‐Antarctic regions and to establish the biogeographical relationships between the different constituent locations to test the application of a precise and refined taxonomy in generating accurate polar biogeographies. Location The Antarctic and sub‐Antarctic region comprising the islands South Georgia, Crozet, Kerguelen, Marion, Heard and the Antarctic Peninsula. Methods Diatom samples from different habitats in a large part of the sub‐Antarctic and Antarctic region were investigated for their Stauroneis content. Presence/absence data were investigated using Sørensen's similarity index. An additional 500 samples from Arctic locations were used to provide a bipolar comparison. Using reliable literature data, gaps in the distribution of the Stauroneis taxa were filled. Results The Stauroneis flora of the Antarctic and sub‐Antarctic regions is quite distinct from its Arctic equivalent, with only five species (out of 60) common to both areas. Within the (sub‐)Antarctic group, the islands of the Indian Ocean have the most diverse Stauroneis composition, which is clearly separated from the rest of the region. The South Georgia Stauroneis composition has some affinities with the Antarctic Peninsula but the latter has far fewer species. These results are in clear contrast to older data showing no biogeographical difference between the Arctic and Antarctic regions. Main conclusions Using only a single genus, a clear biogeography of the (sub‐)Antarctic region can be produced that separates the Indian Ocean islands from other sampling locations. When based on a precise taxonomy, biogeographical relationships between locations in the region become much more reliable. Contrary to previous work, there is almost no similarity in the diatom floras of the Arctic and Antarctic regions.  相似文献   

11.
The South American tern Sterna hirundinacea is a migratory species for which dispersal, site fidelity and migratory routes are largely unknown. Here, we used five microsatellite loci and 799 bp partial mitochondrial DNA sequences (Cytochrome b and ND2) to investigate the genetic structure of South American terns from the South Atlantic Ocean (Brazilian and Patagonian colonies). Brazilian and Patagonian colonies have two distinct breeding phenologies (austral winter and austral summer, respectively) and are under the influence of different oceanographic features (e.g. Brazil and Falklands/Malvinas ocean currents, respectively), that may promote genetic isolation between populations. Results show that the Atlantic populations are not completely panmictic, nevertheless, contrary to our expectations, low levels of genetic structure were detected between Brazilian and Patagonian colonies. Such low differentiation (despite temporal isolation of the colonies) could be explained by demographic history of these populations coupled with ongoing levels of gene flow. Interestingly, estimations of gene flow through Maximum likelihood and Bayesian approaches has indicated asymmetrical long term and contemporary gene flow from Brazilian to Patagonian colonies, approaching a source–sink metapopulation dynamic. Genetic analysis of other South American tern populations (especially those from the Pacific coast and Falklands–Malvinas Islands) and other seabird species showing similar geographical distribution (e.g. royal tern Thalasseus maximus), are fundamental in gaining a better understanding of the main processes involved in the diversification of seabirds in the southern hemisphere.  相似文献   

12.
The galaxioid fishes are the dominant, most speciose group of freshwater fishes (with >50 species) in the lands of the cool southern hemisphere, with representatives in western and eastern Australia, Tasmania, New Caledonia, Lord Howe Island, New Zealand, the Chatham, Auckland and Campbell Islands, Patagonian South America (Chile, Argentina), the Falkland Islands and South Africa. The group is most diverse in Australia and New Zealand. Lepidogalaxiidae is found only in Australia, Retropinnidae in Australia and New Zealand, and Galaxiidae across the entire range of the group. Many species are in serious conservation crisis for a diversity of reasons, including habitat deterioration and possibly fisheries exploitation, but there is enduring and pervasive information that shows that the group has been seriously impacted by the acclimatisation of salmonid fishes originating in the cool-temperate northern hemisphere, particularly brown and rainbow trout. With few exceptions, where these trout have been introduced there has been major decline in the galaxioids, especially Galaxiidae, as a result of a complexly interacting series of adverse impacts from these introduced fishes. In some places, centrarchids and cichlids may also have adverse impacts. In addition, there appear to have been adverse impacts from the translocation of galaxioids into communities where they do not naturally occur. In many instances it appears that displacement of the galaxioids has led to a situation where galaxioids and salmonids no longer co-occur, owing either to displacement or predation, leading to fish communities in which there is no explicit evidence for displacement. These effects are resulting in the galaxioid fishes being amongst the most seriously threatened fishes known.  相似文献   

13.
Distant populations of animals may share their non-breeding grounds or migrate to distinct areas, and this may have important consequences for population differentiation and dynamics. Small burrow-nesting seabirds provide a suitable case study, as they are often restricted to safe breeding sites on islands, resulting in a patchy breeding distribution. For example, Thin-billed prions Pachyptila belcheri have two major breeding colonies more than 8,000 km apart, on the Falkland Islands in the south-western Atlantic and in the Kerguelen Archipelago in the Indian Ocean. We used geolocators and stable isotopes to compare at-sea movements and trophic levels of these two populations during their non-breeding season, and applied ecological niche models to compare environmental conditions in the habitat. Over three winters, birds breeding in the Atlantic showed a high consistency in their migration routes. Most individuals migrated more than 3000 km eastwards, while very few remained over the Patagonian Shelf. In contrast, all Indian Ocean birds migrated westwards, resulting in an overlapping nonbreeding area in the eastern Atlantic sector of the Southern Ocean. Geolocators and isotopic signature of feathers indicated that prions from the Falklands moulted at slightly higher latitudes than those from Kerguelen Islands. All birds fed on low trophic level prey, most probably crustaceans. The phenology differed notably between the two populations. Falkland birds returned to the Patagonian Shelf after 2-3 months, while Kerguelen birds remained in the nonbreeding area for seven months, before returning to nesting grounds highly synchronously and at high speed. Habitat models identified sea surface temperature and chlorophyll a concentration as important environmental parameters. In summary, we show that even though the two very distant populations migrate to roughly the same area to moult, they have distinct wintering strategies: They had significantly different realized niches and timing which may contribute to spatial niche partitioning.  相似文献   

14.
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ~43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity.  相似文献   

15.
A corollary of island biogeographical theory is that islands are largely colonized from their nearest mainland source. Despite Madagascar’s extreme isolation from India and proximity to Africa, a high proportion of the biota of the Madagascar region has Asian affinities. This pattern has rarely been viewed as surprising, as it is consistent with Gondwanan vicariance. Molecular phylogenetic data provide strong support for such Asian affinities, but often not for their vicariant origin; most divergences between lineages in Asia and the Madagascar region post‐date the separation of India and Madagascar considerably (up to 87 Myr), implying a high frequency of dispersal that mirrors colonization of the Hawaiian archipelago in distance. Indian Ocean bathymetry and the magnitude of recent sea‐level lowstands support the repeated existence of sizeable islands across the western Indian Ocean, greatly reducing the isolation of Madagascar from Asia. We put forward predictions to test the role of this historical factor in the assembly of the regional biota. © The Willi Hennig Society 2009.  相似文献   

16.
The parasitic phaeophycean endophyte Herpodiscus durvillaeae (Lindauer) G. R. South has previously only been recorded from New Zealand, in association with a single host species, Durvillaea antarctica (Chamisso) Hariot (southern bull‐kelp). Here we use DNA sequence data from plastid and nuclear markers (chloroplast rbcL, ribosomal LSU, and a nuclear pseudogene copy of COI) to test for the presence of H. durvillaeae beyond the New Zealand region, and on host species other than D. antarctica. Analyses of samples from the Falkland Islands confirm the first record of H. durvillaeae from the Atlantic Ocean. We report that Falkland Islands H. durvillaeae are genetically indistinguishable from samples of this species from New Zealand's sub‐Antarctic Campbell Island, suggesting recent dispersal of the parasite across the Pacific Ocean, presumably by rafting with its buoyant macroalgal host. We also here record Hdurvillaeae from New Zealand endemics Durvillaea poha Fraser et al. and D. willana Lindauer.  相似文献   

17.
Patagonian toothfish Dissostichus eleginoides Smitt 1898, is an important commercially targeted Notothenioid species in South-Atlantic waters. In this study we aimed to clarify several aspects of reproductive biology of Patagonian toothfish in the Falkland Islands waters. Histological examination of female gonads indicates that with the beginning of maturation females maintain at least two populations of oocytes, suggesting that toothfish requires up to two years for oocytes development. Females become mature at an average size of 79.1 cm indicating a decrease of first maturity size if toothfish females in the Falkland Island waters. The majority of females spawn at the size from 101 to 130 cm total length. Distribution of reproductive phases shows an increase of females at developing stage in December and March prior to the spawning peaks in May and August respectively. However, the majority of the toothfish population consist of non-spawning individuals remaining in regressing phase (55.8 to 85.6%) including the spawning period. The skip-spawning for toothfish has been defined as reabsorbing non-reproductive and resting types. The abbreviation of oocytes development in the gonads was observed from 1 to 22.1% of females which omitted the spawning season. Most likely females which remain in the spawning area have the opportunity to spawn more often, whereas females which undergo foraging migration toward Northern parts of the Falklands waters return to the spawning ground less often. Females remain Northern area longer to accumulate necessary amount of energy. This hypnotise is supported by the presence of females in immature, developing and regressing phase throughout surrounding Falkland Islands waters. Presence of post-spawning females in regressing stage throughout the Falklands waters suggest that toothfish may undertake irregular spawning/foraging migration when favourable for spawning condition occur.  相似文献   

18.
Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil‐calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity‐dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae.  相似文献   

19.
Four major austral continental distribution patterns are evident in pteridophytes. Twenty-two species are completely circum-Antarctic. Another 39 species are partially circum-Antarctic, occurring in Australasia (Australia and New Zealand) and Africa (including Madagascar) but not South America, while 29 are in Africa and South America but not Australasia, and 13 are in South America and Australasia but not Africa. Two hypotheses are considered as explanations for the patterns: continental drift following the breakup of Gondwana and long-distance dispersal. Fossil evidence indicates that the majority of pteridophyte families involved appeared after the southern continents had drifted apart, so long-distance dispersal is likely to explain the distribution of species in these families on now widely separated continents. For those families extant before the break-up, there is no indication in the fossil record that the species involved were present in Gondwana. Aspects of the ecology of the species that are partly or completely circum-Antarctic indicate that long-distance dispersal, rather than continental drift, is a likely explanation for the patterns.  相似文献   

20.
Penguins probably originated in the core of Gondwanaland when South America, Africa, and Antarctica were just beginning to separate. As the continents drifted apart, the division filled with what became the southern ocean. One of the remaining land masses moved south and was caught at the pole by the Earth's rotation. It became incrusted with ice and is now known as East Antarctica. Linking it to South America was a series of submerged mountain ranges that formed a necklace of islands. The northern portion of the necklace, called the Scotia Arc, is now the "fertile crescent" of the Southern Ocean. The greatest numbers and biomass of penguins are found here as well as that of krill, the primary prey species of most penguins, and many other marine predators. Today penguins are found throughout the sub-Antarctic islands and around the entire Antarctic continent. Using satellite transmitters and time-depth recorders, while taking advantage of the parental dedication of breeding birds, numerous investigators have described foraging habits of several species of penguins. The information obtained is labor intensive and costly so that studies are restricted to certain species, areas and seasons. Here I review the patterns evident among six of the most abundant and completely studied of the penguins. The variation in behavior is considerable from those species that seldom dive deeper than 20 m in search of prey to those that will dive to depths >500 m to catch mesopelagic fish and squid. Foraging trips from breeding colonies vary among species and with the season. Often the birds travel no more than 30 km and at other times the trips may exceed 600 km. Sub-Antarctic species often reach more productive waters near or within the Antarctic Polar Front zone, where the mixing of Antarctic and sub-Antarctic waters provide rich resources for their prey. Antarctic species usually remain close to shore, along the continental slope, or near the sea ice edge. Less is known about penguins during the pelagic phase between breeding cycles. What we do know is surprising in regard to their dispersal, which ranges from hundreds to thousands of kilometers from the breeding colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号