首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
DNA damage checkpoints coordinate the cellular response to genotoxic stress and arrest the cell cycle in response to DNA damage and replication fork stalling. Homologous recombination is a ubiquitous pathway for the repair of DNA double-stranded breaks and other checkpoint-inducing lesions. Moreover, homologous recombination is involved in postreplicative tolerance of DNA damage and the recovery of DNA replication after replication fork stalling. Here, we show that the phosphorylation on serines 2, 8, and 14 (S2,8,14) of the Rad55 protein is specifically required for survival as well as for normal growth under genome-wide genotoxic stress. Rad55 is a Rad51 paralog in Saccharomyces cerevisiae and functions in the assembly of the Rad51 filament, a central intermediate in recombinational DNA repair. Phosphorylation-defective rad55-S2,8,14A mutants display a very slow traversal of S phase under DNA-damaging conditions, which is likely due to the slower recovery of stalled replication forks or the slower repair of replication-associated DNA damage. These results suggest that Rad55-S2,8,14 phosphorylation activates recombinational repair, allowing for faster recovery after genotoxic stress.  相似文献   

2.
DNA double-strand break repair can be accomplished by homologous recombination when a sister chromatid or a homologous chromosome is available. However, the study of sister chromatid double-strand break repair in prokaryotes is complicated by the difficulty in targeting a break to only one copy of two essentially identical DNA sequences. We have developed a system using the Escherichia coli chromosome and the restriction enzyme EcoKI, in which double-strand breaks can be introduced into only one sister chromatid. We have shown that the components of the RecBCD and RecFOR 'pathways' are required for the recombinational repair of these breaks. Furthermore, we have shown a requirement for SbcCD, the prokaryotic homologue of Rad50/Mre11. This is the first demonstration that, like Rad50/Mre11, SbcCD is required for recombination in a wild-type cell. Our work suggests that the SbcCD-Rad50/Mre11 family of proteins, which have two globular domains separated by a long coiled-coil linker, is specifically required for the co-ordination of double-strand break repair reactions in which two DNA ends are required to recombine at one target site.  相似文献   

3.
Chromosomal rearrangements are common in both clinical isolates and spontaneous mutants of Candida albicans. It appears that many of these rearrangements are caused by translocations around the major sequence repeat (MSR) that is present in all chromosomes except chromosome 3, suggesting that homologous recombination (HR) may play an important role in the survival of this organism. In order to gain information on these processes, we have cloned the homologue of RAD52, which in Saccharomyces cerevisiae is the only gene required for all HR events. CaRAD52 complemented poorly a rad52 mutant of S. cerevisiae. Two null Carad52Delta/Carad52Delta mutants were constructed by sequential deletion of both alleles and two reconstituted strains were obtained by reintegration of the gene. Characterization of these mutants indicated that HR plays an essential role in the repair of DNA lesions caused by both UV light and the radiomimetic compound methyl-methane-sulphonate (MMS), whereas the non-homologous end-joining pathway (NHEJ) is used only in the absence of Rad52p or after extensive DNA damage. Repair by HR is more efficient in exponentially growing than in stationary cells, probably because a larger number of cells are in late S or G2 phases of the cell cycle (and therefore, can use a sister chromatid as a substrate for recombinational repair), whereas stationary phase cells are mainly in G0 or G1, and only can be repaired using the chromosomal homologue. In addition, CaRad52p is absolutely required for the integration of linear DNA with long flanking homologous sequences. Finally, the absence of CaRad52p results in the lengthening of telomeres, even in the presence of an active telomerase, an observation not described in any other organism. This raises the possibility that both telomerase and homologous recombination may function simultaneously at C. albicans telomeres.  相似文献   

4.
Cells overcome intra-S DNA damage and replication impediments by coupling chromosome replication to sister chromatid-mediated recombination and replication-bypass processes. Further, molecular junctions between replicated molecules have been suggested to assist sister chromatid cohesion until anaphase. Using two-dimensional gel electrophoresis, we have identified, in yeast cells, replication-dependent X-shaped molecules that appear during origin activation, branch migrate, and distribute along the replicon through a mechanism influenced by the rate of fork progression. Their formation is independent of Rad51- and Rad52-mediated homologous recombination events and is not affected by DNA damage or replication blocks. Further, in hydroxyurea-treated rad53 mutants, altered in the replication checkpoint, the branched molecules progressively degenerate and likely contribute to generate pathological structures. We suggest that cells couple sister chromatid tethering with replication initiation by generating specialized joint molecules resembling hemicatenanes: this process might prime cohesion and assist sister chromatid-mediated recombination and replication events.  相似文献   

5.
The human MRN complex is a multisubunit nuclease that is composed of Mre11, Rad50, and Nbs1 and is involved in homologous recombination and DNA damage checkpoints. Mutations of the MRN genes cause genetic disorders such as Nijmegen breakage syndrome. Here we identified a Schizosaccharomyces pombe nbs1(+) homologue by screening for mutants with mutations that caused methyl methanesulfonate (MMS) sensitivity and were synthetically lethal with the rad2Delta mutation. Nbs1 physically interacts with the C-terminal half of Rad32, the Schizosaccharomyces pombe Mre11 homologue, in a yeast two-hybrid assay. nbs1 mutants showed sensitivities to gamma-rays, UV, MMS, and hydroxyurea and displayed telomere shortening similar to the characteristics of rad32 and rad50 mutants. nbs1, rad32, and rad50 mutant cells were elongated and exhibited abnormal nuclear morphology. These findings indicate that S. pombe Nbs1 forms a complex with Rad32-Rad50 and is required for homologous recombination repair, telomere length regulation, and the maintenance of chromatin structure. Amino acid sequence features and some characteristics of the DNA repair function suggest that the S. pombe Rad32-Rad50-Nbs1 complex has functional similarity to the corresponding MRN complexes of higher eukaryotes. Therefore, S. pombe Nbs1 will provide an additional model system for studying the molecular function of the MRN complex associated with genetic diseases.  相似文献   

6.
The Rad51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a central role in both mitotic and meiotic homologous DNA recombination (HR) in Saccharomyces cerevisiae and is essential for the proliferation of vertebrate cells. Five vertebrate genes, RAD51B, -C, and -D and XRCC2 and -3, are implicated in HR on the basis of their sequence similarity to Rad51 (Rad51 paralogs). We generated mutants deficient in each of these proteins in the chicken B-lymphocyte DT40 cell line and report here the comparison of four new mutants and their complemented derivatives with our previously reported rad51b mutant. The Rad51 paralog mutations all impair HR, as measured by targeted integration and sister chromatid exchange. Remarkably, the mutant cell lines all exhibit very similar phenotypes: spontaneous chromosomal aberrations, high sensitivity to killing by cross-linking agents (mitomycin C and cisplatin), mild sensitivity to gamma rays, and significantly attenuated Rad51 focus formation during recombinational repair after exposure to gamma rays. Moreover, all mutants show partial correction of resistance to DNA damage by overexpression of human Rad51. We conclude that the Rad51 paralogs participate in repair as a functional unit that facilitates the action of Rad51 in HR.  相似文献   

7.
The SRS2 gene of Saccharomyces cerevisiae encoding a 3'-->5' DNA helicase is part of the postreplication repair pathway and functions to ensure proper repair of DNA damage arising during DNA replication through pathways that do not involve homologous recombination. Through a synthetic gene array analysis, genes that are essential when Srs2 is absent have been identified. Among these are MRC1, TOF1, and CSM3, which mediate the intra-S checkpoint response. srs2 Delta mrc1 Delta synthetic lethality is due to inappropriate recombination, as the lethality can be suppressed by genetic elimination of homologous recombination. srs2 Delta mrc1 Delta synthetic lethality is dependent on the role of Mrc1 in DNA replication but independent of the role of Mrc1 in a DNA damage checkpoint response. mrc1 Delta, tof1 Delta and csm3 Delta mutants have sister chromatid cohesion defects, implicating sister chromatid cohesion established at the replication fork as an important factor in promoting repair of stalled replication forks through gap repair.  相似文献   

8.
Mozlin AM  Fung CW  Symington LS 《Genetics》2008,178(1):113-126
Rad51 requires a number of other proteins, including the Rad51 paralogs, for efficient recombination in vivo. Current evidence suggests that the yeast Rad51 paralogs, Rad55 and Rad57, are important in formation or stabilization of the Rad51 nucleoprotein filament. To gain further insights into the function of the Rad51 paralogs, reporters were designed to measure spontaneous or double-strand break (DSB)-induced sister or nonsister recombination. Spontaneous sister chromatid recombination (SCR) was reduced 6000-fold in the rad57 mutant, significantly more than in the rad51 mutant. Although the DSB-induced recombination defect of rad57 was suppressed by overexpression of Rad51, elevated temperature, or expression of both mating-type alleles, the rad57 defect in spontaneous SCR was not strongly suppressed by these same factors. In addition, the UV sensitivity of the rad57 mutant was not strongly suppressed by MAT heterozygosity, even though Rad51 foci were restored under these conditions. This lack of suppression suggests that Rad55 and Rad57 have different roles in the recombinational repair of stalled replication forks compared with DSB repair. Furthermore, these data suggest that most spontaneous SCR initiates from single-stranded gaps formed at stalled replication forks rather than DSBs.  相似文献   

9.
In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential complex required for homologous recombination repair. We have examined the response of smc6 mutants to the inhibition of DNA replication. We define homologous recombination-dependent and -independent functions for Smc6 during replication inhibition and provide evidence for a Rad60-independent function within S phase, in addition to a Rad60-dependent function following S phase. Both genetic and physical data show that when forks collapse (i.e., are not stabilized by the Cds1Chk2 checkpoint), Smc6 is required for the effective repair of resulting lesions but not for the recruitment of recombination proteins. We further demonstrate that when the Rad60-dependent, post-S-phase Smc6 function is compromised, the resulting recombination-dependent DNA intermediates that accumulate following release from replication arrest are not recognized by the G2/M checkpoint.  相似文献   

10.
The Rad50 hook domain is a critical determinant of Mre11 complex functions   总被引:1,自引:0,他引:1  
The Mre11 complex (in Saccharomyces cerevisiae: Mre11, Rad50 and Xrs2) influences multiple facets of chromosome break metabolism. A conserved feature of the Mre11 complex is a zinc-coordinating motif in Rad50 called the Rad50 hook. We established a diploid yeast strain, rad50(hook), in which Rad50 is encoded in halves, one from each of the two RAD50 alleles, with the residues constituting the hook deleted. In all respects, rad50(hook) phenocopies complete Rad50 deficiency. Replacing the hook domain with a ligand-inducible FKBP dimerization cassette partially mitigated all phenotypes in a ligand-dependent manner. The data indicate that the Rad50 hook is critical for Mre11 complex-dependent DNA repair, telomere maintenance and meiotic double-strand break formation. Sister chromatid cohesion was unaffected by Rad50 deficiency, suggesting that molecular bridging required for recombinational DNA repair is qualitatively distinct from cohesin-mediated sister chromatid cohesion.  相似文献   

11.
Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair.  相似文献   

12.
The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis   总被引:13,自引:0,他引:13  
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified from yeast (Rad55, Rad57 and Dmc1) to vertebrates (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3 and Dmc1). These Rad51-like proteins are all members of the genetic recombination and DNA damage repair pathways. The sequenced genome of Arabidopsis thaliana encodes putative homologues of all six vertebrate Rad51-like proteins. We have identified and characterized an Arabidopsis mutant defective for one of these, AtXRCC3, the homologue of XRCC3. atxrcc3 plants are sterile, while they have normal vegetative development. Cytological observation shows that the atxrcc3 mutation does not affect homologous chromosome synapsis, but leads to chromosome fragmentation after pachytene, thus disrupting both male and female gametogenesis. This study shows an essential role for AtXrcc3 in meiosis in plants and possibly in other higher eukaryotes. Furthermore, atxrcc3 cells and plants are hypersensitive to DNA-damaging treatments, supporting the involvement of this Arabidopsis Rad51-like protein in recombinational repair.  相似文献   

13.
The RAD52 gene is essential for homologous recombination in the yeast Saccharomyces cerevisiae. RAD52 is the archetype in an epistasis group of genes essential for DNA damage repair. By catalyzing the replacement of replication protein A with Rad51 on single-stranded DNA, Rad52 likely promotes strand invasion of a double-stranded DNA molecule by single-stranded DNA. Although the sequence and in vitro functions of mammalian RAD52 are conserved with those of yeast, one difference is the presence of introns and consequent splicing of the mammalian RAD52 pre-mRNA. We identified two novel splice variants from the RAD52 gene that are expressed in adult mouse tissues. Expression of these splice variants in tissue culture cells elevates the frequency of recombination that uses a sister chromatid template. To characterize this dominant phenotype further, the RAD52 gene from the yeast Saccharomyces cerevisiae was truncated to model the mammalian splice variants. The same dominant sister chromatid recombination phenotype seen in mammalian cells was also observed in yeast. Furthermore, repair from a homologous chromatid is reduced in yeast, implying that the choice of alternative repair pathways may be controlled by these variants. In addition, a dominant DNA repair defect induced by one of the variants in yeast is suppressed by overexpression of RAD51, suggesting that the Rad51-Rad52 interaction is impaired.  相似文献   

14.
H Neecke  G Lucchini    M P Longhese 《The EMBO journal》1999,18(16):4485-4497
We studied the response of nucleotide excision repair (NER)-defective rad14Delta cells to UV irradiation in G(1) followed by release into the cell cycle. Only a subset of checkpoint proteins appears to mediate cell cycle arrest and regulate the timely activation of replication origins in the presence of unrepaired UV-induced lesions. In fact, Mec1 and Rad53, but not Rad9 and the Rad24 group of checkpoint proteins, are required to delay cell cycle progression in rad14Delta cells after UV damage in G(1). Consistently, Mec1-dependent Rad53 phosphorylation after UV irradiation takes place in rad14Delta cells also in the absence of Rad9, Rad17, Rad24, Mec3 and Ddc1, and correlates with entry into S phase. Two-dimensional gel analysis indicates that late replication origins are not fired in rad14Delta cells UV-irradiated in G(1) and released into the cell cycle, which instead initiate DNA replication from early origins and accumulate replication and recombination intermediates. Progression through S phase of UV-treated NER-deficient mec1 and rad53 mutants correlates with late origin firing, suggesting that unregulated DNA replication in the presence of irreparable UV-induced lesions might result from a failure to prevent initiation at late origins.  相似文献   

15.
In the mitotic cell cycle of the yeast Saccharomyces cerevisiae, the sister chromatid is preferred over the homologous chromosome (non-sister chromatid) as a substrate for DNA double-strand break repair. However, no genes have yet been shown to be preferentially involved in sister chromatid-mediated repair. We developed a novel method to identify genes that are required for repair by the sister chromatid, using a haploid strain that can embark on meiosis. We show that the recombinational repair gene RAD54 is required primarily for sister chromatid-based repair, whereas TID1, a yeast RAD54 homologue, and the meiotic gene DMC1, are dispensable for this type of repair. Our observations suggest that the sister chromatid repair pathway, which involves RAD54, and the homologous chromosome repair pathway, which involves DMC1, can substitute for one another under some circumstances. Deletion of RAD54 in S.cerevisiae results in a phenotype similar to that found in mammalian cells, namely impaired DNA repair and reduced recombination during mitotic growth, with no apparent effect on meiosis. The principal role of RAD54 in sister chromatid-based repair may also be shared by mammalian and yeast cells.  相似文献   

16.
To investigate the DNA damage response, we undertook a genome-wide study in Saccharomyces cerevisiae and identified 86 gene deletions that lead to increased levels of spontaneous Rad52 foci in proliferating diploid cells. More than half of the genes are conserved across species ranging from yeast to humans. Along with genes involved in DNA replication, repair, and chromatin remodeling, we found 22 previously uncharacterized open reading frames. Analysis of recombination rates and synthetic genetic interactions with rad52Δ suggests that multiple mechanisms are responsible for elevated levels of spontaneous Rad52 foci, including increased production of recombinogenic lesions, sister chromatid recombination defects, and improper focus assembly/disassembly. Our cell biological approach demonstrates the diversity of processes that converge on homologous recombination, protect against spontaneous DNA damage, and facilitate efficient repair.  相似文献   

17.
A new DNA repair gene from fission yeast Schizosaccharomyces pombe rlp1+ (RecA-like protein) has been identified. Rlp1 shows homology to RecA-like proteins, and is the third S. pombe Rad51 paralog besides Rhp55 and Rhp57. The new gene encodes a 363 aa protein with predicted Mr of 41,700 and has NTP-binding motif. The rlp1Delta mutant is sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and camptothecin (CPT), although to a lesser extent than the deletion mutants of rhp55+ and rhp51+ genes. In contrast to other recombinational repair mutants, the rlp1Delta mutant does not exhibit sensitivity to UV light and mitomycin C (MMC). Mitotic recombination is moderately reduced in rlp1 mutant. Epistatic analysis of MMS and IR-sensitivity of rlp1Delta mutant indicates that rlp1+ acts in the recombinational pathway of double-strand break (DSB) repair together with rhp51+, rhp55+, and rad22+ genes. Yeast two-hybrid analysis suggests that Rlp1 may interact with Rhp57 protein. We propose that Rlp1 have an accessory role in repair of a subset of DNA damage induced by MMS and IR, and is required for the full extent of DNA recombination and cell survival under condition of a replication fork collapse.  相似文献   

18.
Mitotic homologous recombination is utilised to repair DNA breaks using either sister chromatids or homologous chromosomes as templates. Because sister chromatids are identical, exchanges between sister chromatids have no consequences for the maintenance of genomic integrity unless they involve repetitive DNA sequences. Conversely, homologous chromosomes might differ in genetic content, and exchanges between homologues might lead to loss of heterozygosity and subsequent inactivation of functional genes. Genomic instability, caused by unscheduled recombination events between homologous chromosomes, is enhanced in the absence of RecQ DNA helicases, as observed in Bloom's cancer-prone syndrome. Here, we used two-dimensional gel electrophoresis to analyse budding yeast diploid cells that were modified to distinguish replication intermediates originating from each homologous chromosome. Therefore, these cells were suitable for analysing the formation of inter-homologue junctions. We found that Rad51-dependent DNA structures resembling inter-homologue junctions accumulate together with sister chromatid junctions at damaged DNA replication forks in recQ mutants, but not in the absence of Srs2 or Mph1 DNA recombination helicases. Inter-homologue joint molecules in recQ mutants are less abundant than sister chromatid junctions, but they accumulate with similar kinetics after origin firing under conditions of DNA damage. We propose that unscheduled accumulation of inter-homologue junctions during DNA replication might account for allelic recombination defects in recQ mutants.  相似文献   

19.
L. C. Kadyk  L. H. Hartwell 《Genetics》1993,133(3):469-487
Homolog recombination and unequal sister chromatid recombination were monitored in rad1-1/rad1-1 diploid yeast cells deficient for excision repair, and in control cells, RAD1/rad1-1, after exposure to UV irradiation. In a rad1-1/rad1-1 diploid, UV irradiation stimulated much more sister chromatid recombination relative to homolog recombination when cells were irradiated in the G(1) or the G(2) phases of the cell cycle than was observed in RAD1/rad1-1 cells. Since sister chromatids are not present during G(1), this result suggested that unexcised lesions can stimulate sister chromatid recombination events during or subsequent to DNA replication. The results of mating rescue experiments suggest that unexcised UV dimers do not stimulate sister chromatid recombination during the G(2) phase, but only when they are present during DNA replication. We propose that there are two types of sister chromatid recombination in yeast. In the first type, unexcised UV dimers and other bulky lesions induce sister chromatid recombination during DNA replication as a mechanism to bypass lesions obstructing the passage of DNA polymerase, and this type is analogous to the type of sister chromatid exchange commonly observed cytologically in mammalian cells. In the second type, strand scissions created by X-irradiation or the excision of damaged bases create recombinogenic sites that result in sister chromatid recombination directly in G(2). Further support for the existence of two types of sister chromatid recombination is the fact that events induced in rad1-1/rad1-1 were due almost entirely to gene conversion, whereas those in RAD1/rad1-1 cells were due to a mixture of gene conversion and reciprocal recombination.  相似文献   

20.
The regulation of chromatin mobility in response to DNA damage is important for homologous recombination in yeast. Anchorage reduces rates of recombination, whereas increased chromatin mobility correlates with more efficient homology search. Here we tracked the mobility and localization of spontaneous S‐phase lesions bound by Rad52, and find that these foci have reduced movement, unlike enzymatically induced double‐strand breaks. Moreover, spontaneous repair foci are positioned in the nuclear core, abutting the nucleolus. We show that cohesin and nucleolar integrity constrain the mobility of these foci, consistent with the notion that spontaneous, S‐phase damage is preferentially repaired from the sister chromatid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号