首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

2.
Etiolated mung bean seedlings were examined for chorismate mutase activity. Evidence for the occurrence of two forms of the enzyme (designated CM-1 and CM-2) was obtained by ammonium sulfate fractionation, anion exchange cellulose chromatography, and isoelectric focusing. The two forms showed distinctly different properties, as CM-1 was inhibited by phenylalanine and tyrosine and activated by tryptophan, but inhibition by phenylalanine and tyrosine was reversed by tryptophan. The other form, CM-2, was unaffected by any of the three aromatic amino acids. Isoelectric points of the two forms were CM-1, pH 4.6, and CM-2, pH 5.6. The molecular weights estimated by molecular sieving on Sephadex G-200 were CM-1, 50,000, and CM-2, 36,000.  相似文献   

3.
Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L form of phenylalanine. Transport was almost totally inhibited by carbonyl cyanide-m-chlorophenylhydrazone. Iodoacetate and N-ethylmaleimide were much more inhibitory for tryptophan transport than for transport of the other two aromatic amino acids.  相似文献   

4.
Chorismate mutase CM-1, an isozyme that is inhibited by phenylalanine and tyrosine and activated by tryptophan was purified 1200-fold from etiolated mung bean seedlings with a final yield of 18–20%. Loss of activity was rapid in highly purified preparations but was reduced by the addition of bovine serum albumin. Enzyme activity was unaffected by thiol-alkylating agents, reducing agents, EDTA, or divalent cations.The enzyme displayed pH-sensitive, positive homotrophic cooperativity toward chorismate with greatest cooperativity at the pH optimum of the tryptophan-free enzyme (pH 7.2–7.4) and least cooperativity at the pH optimum of the enzyme fully activated with tryptophan (pH 7.0). Activation by tryptophan reduced the Km for the enzyme, and modified the sigmoid substrate saturation kinetics to a rectangular hyperbola. Feedback inhibition by the end product amino acids phenylalanine and tyrosine was not additive but revealed heterotrophic cooperativity with chorismate. Tyrosine (Ki = 31 μM) was a slightly more effective inhibitor than phenylalanine (Ki = 37 μM) at 1 mm chorismate. Tryptophan at equimolar concentration antagonized the feedback inhibition by phenylalanine and tyrosine. The latter two, however, at higher concentrations reversed the tryptophan activation in a noncompetitive fashion with respect to either tryptophan or chorismate. The enzyme was responsive only to the l-isomers of the amino acids. The results indicate a primary role for chorismate mutase CM-1 from mung bean in the regulation of the synthesis of phenylalanine and tyrosine for protein synthesis.  相似文献   

5.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

6.
The effects of phenylalanine, NaCl and pH on the conformation of chorismate mutase/prephenate dehydratase have been investigated, using measurements of far and near-ultraviolet circular dichroic spectra and ultraviolet difference spectra. At pH 8.2 in 20 mM Tris-Cl buffer the enzyme was found to contain 10-20% helix and 40-50% beta-structure. There was little or no change in these values on the addition of 1 mM phenylalanine (the allosteric effector) or 0.4 M NaCl or by decreasing the pH to 7.4. Both phenylalanine and NaCl caused significant changes in the conformation of the enzyme. The most prominent of these was the movement of a tryptophan residue into a more hydrophobic environment. There was also a slight perturbation of this tryptophan when the pH was decreased to 7.4. The conformational changes can explain sigmoidal kinetic behaviour observed previously [Gething et al. (1976) Eur. J. Biochem. 71, 317-325].  相似文献   

7.
The three aromatic amino acids phenylalanine, tyrosine, and tryptophan are synthesized in the plastids of higher plants. There is, however, biochemical evidence that a cytosolic isoform exists of the enzyme catalysing the first step of that branch of the pathway which is specific for the synthesis of phenylalanine and tyrosine, i.e. chorismate mutase (CM). We now report on the isolation of a cDNA clone encoding a cytosolic CM isozyme from Arabidopsis thaliana that was identified by complementing a CM-deficient Escherichia coli strain. The deduced amino acid sequence of this isozyme was 50% identical to that of a previously isolated plastidic CM, and 41% identical to that of yeast CM. The organ-specific expression patterns of the two CM genes were rather similar, but only the gene encoding the plastidic isozyme was elicitor- and pathogen-inducible. The plastidic CM expressed in E. coli was activated by tryptophan and inhibited by phenylalanine and tyrosine, whereas the cytosolic isozyme was insensitive. The existence of a cytosolic CM isozyme implies that either a cytosolic pathway (partial or complete) for the biosynthesis of phenylalanine and tyrosine exists, or that prephenate, originating from chorismate in the cytosol, is utilized for the synthesis of metabolites other than these two aromatic amino acids.  相似文献   

8.
1. Histidine-pyruvate aminotransferase (isoenzyme 1) was purified to homogeneity from the mitochondrial and supernatant fractions of rat liver, as judged by polyacrylamide-gel electrophoresis and isolectric focusing. Both enzyme preparations were remarkably similar in physical and enzymic properties. Isoenzyme 1 had pI8.0 and a pH optimum of 9.0. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors in the following order of activity: phenylalanine greater than tyrosine greater than histidine. Very little activity was found with tryptophan and 5-hydroxytryptophan. The apparent Km values were about 2.6mM for histidine and 2.7 mM for phenylalanine. Km values for pyruvate were about 5.2mM with phenylalanine as amino donor and 1.1mM with histidine. The aminotransferase activity of the enzyme towards phenylalanine was inhibited by the addition of histidine. The mol.wt. determined by gel filtration and sucrose-density-gradient centrifugation was approx. 70000. The mitochondrial and supernatant isoenzyme 1 activities increased approximately 25-fold and 3.2-fold respectively in rats repeatedly injected with glucagon for 2 days. 2. An additional histidine-pyruvate aminotransferase (isoenzyme 2) was partially purified from both the mitochondrial and supernatant fractions of rat liver. Nearly identical properties were observed with both preparations. Isoenzyme 2 had pI5.2 and a pH optimum of 9.3. The enzyme was specific for pyruvate and did not function with 2-oxoglutarate. The order of effectiveness of amino donors was tyrosine = phenylalanine greater than histidine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values for histidine and phenylalanine were about 0.51 and 1.8 mM respectively. Km values for pyruvate were about 3.5mM with phenylalanine and 4.7mM with histidine as amino donors. Histidine inhibited phenylalanine aminotransferase activity of the enzyme. Gel filtration and sucrose-density-gradient centrifugation yielded a mol.wt. of approx. 90000. Neither the mitochondrial nor the supernatant isoenzyme 2 activity was elevated by glucagon injection.  相似文献   

9.
Aromatic-amino-acid-glyoxylate aminotransferase was highly purified from the mitochondrial fraction of livers from monkey and glucagon-injected rats. The two enzyme preparations showed physical and enzymic properties different from a kynurenine aminotransferase previously described. The two enzymes had nearly identical molecular weights (approximate 80 000), isoelectric points (pH 8.0) and pH optima (pH 8.0 - 8.5). However, a difference in substrate specificity was observed between the two enzymes. Both enzymes utilized glyoxylate, pyruvate, hydroxypyruvate and 2-oxo-4-methyl-thiobutyrate as effective amino acceptors. 2-Oxoglutarate was active for rat enzyme but not for monkey enzyme. With glyoxylate, amino donors were effective in the following order of activity; phenylalanine greater than histidine greater than tyrosine greater than tryptophan greater than 5-hydroxytrypotphan greater than kynurenine for the rat enzyme, and phenylalanine greater than kynurenine greater than histidine greater than tryptophan greater than 5-hydroxy-tryptophan for the monkey enzyme.  相似文献   

10.
Regulation of phenylalanine biosynthesis in Rhodotorula glutinis.   总被引:1,自引:1,他引:0       下载免费PDF全文
The phenylalanine biosynthetic pathway in the yeast Rhodotorula glutinis was examined, and the following results were obtained. (i) 3-Deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase in crude extracts was partially inhibited by tyrosine, tryptophan, or phenylalanine. In the presence of all three aromatic amino acids an additive pattern of enzyme inhibition was observed, suggesting the existence of three differentially regulated species of DAHP synthase. Two distinctly regulated isozymes inhibited by tyrosine or tryptophan and designated DAHP synthase-Tyr and DAHP synthase-Trp, respectively, were resolved by DEAE-Sephacel chromatography, along with a third labile activity inhibited by phenylalanine tentatively identified as DAHP synthase-Phe. The tyrosine and tryptophan isozymes were relatively stable and were inhibited 80 and 90% by 50 microM of the respective amino acids. DAHP synthase-Phe, however, proved to be an extremely labile activity, thereby preventing any detailed regulatory studies on the partially purified enzyme. (ii) Two species of chorismate mutase, designated CMI and CMII, were resolved in the same chromatographic step. The activity of CMI was inhibited by tyrosine and stimulated by tryptophan, whereas CMII appeared to be unregulated. (iii) Single species of prephenate dehydratase and phenylpyruvate aminotransferase were observed. Interestingly, the branch-point enzyme prephenate dehydratase was not inhibited by phenylalanine or affected by tyrosine, tryptophan, or both. (iv) The only site for control of phenylalanine biosynthesis appeared to be DAHP synthase-Phe. This is apparently sufficient since a spontaneous mutant, designated FP9, resistant to the growth-inhibitory phenylalanine analog p-fluorophenylalanine contained a feedback-resistant DAHP synthase-Phe and cross-fed a phenylalanine auxotroph of Bacillus subtilis.  相似文献   

11.
Chorismate mutase, a branch-point enzyme in the aromatic amino acid pathway of Saccharomyces cerevisiae, and also a mutant chorismate mutase with a single amino acid substitution in the C-terminal part of the protein have been purified approximately 20-fold and 64-fold from overproducing strains, respectively. The wild-type enzyme is activated by tryptophan and subject to feedback inhibition by tyrosine, whereas the mutant enzyme does not respond to activation by tryptophan nor inhibition by tyrosine. Both enzymes are dimers consisting of two identical subunits of Mr 30,000, each one capable of binding one substrate and one activator molecule. Each subunit of the wild-type enzyme also binds one inhibitor molecule, whereas the mutant enzyme lost this ability. The enzyme reaction was observed by 1H NMR and shows a direct and irreversible conversion of chorismate to prephenate without the accumulation of any enzyme-free intermediates. The kinetic data of the wild-type chorismate mutase show positive cooperativity toward the substrate with a Hill coefficient of 1.71 and a [S]0.5 value of 4.0 mM. In the presence of the activator tryptophan, the cooperativity is lost. The enzyme has an [S]0.5 value of 1.2 mM in the presence of 10 microM tryptophan and an increased [S]0.5 value of 8.6 mM in the presence of 300 microM tyrosine. In the mutant enzyme, a loss of cooperativity was observed, and [S]0.5 was reduced to 1.0 mM. This enzyme is therefore locked in the activated state by a single amino acid substitution.  相似文献   

12.
Acinetobacter calcoaceticus belongs to a large phylogenetic cluster of gram-negative procaryotes that all utilize a bifunctional P-protein (chorismate mutase-prephenate dehydratase) [EC 5.4.99.5-4.2.1.51] for phenylalanine biosynthesis. These two enzyme activities from Ac. calcoaceticus were inseparable by gel-filtration or DEAE-cellulose chromatography. The molecular weight of the P-protein in the absence of effectors was 65,000. In the presence of L-tyrosine (dehydratase activator) or L-phenylalanine (inhibitor of both P-protein activities), the molecular weight increased to 122,000. Maximal activation (23-fold) of prephenate dehydratase was achieved at 0.85 mM L-tyrosine. Under these conditions, dehydratase activity exhibited a hysteretic response to increasing protein concentration. Substrate saturation curves for prephenate dehydratase were hyperbolic at L-tyrosine concentrations sufficient to give maximal activation (yielding a Km,app of 0.52 mM for prephenate), whereas at lower L-tyrosine concentrations the curves were sigmoidal. Dehydratase activity was inhibited by L-phenylalanine, and exhibited cooperative interactions for inhibitor binding. A Hill plot yielded an n' value of 3.1. Double-reciprocal plots of substrate saturation data obtained in the presence of L-phenylalanine indicated cooperative interactions for prephenate in the presence of inhibitor. The n values obtained were 1.4 and 3.0 in the absence or presence of 0.3 mM L-phenylalanine, respectively. The hysteretic response of chorismate mutase activity to increasing enzyme concentration was less dramatic than that of prephenate dehydratase. A Km,app for chorismate of 0.63 mM was obtained. L-Tyrosine did not affect chorismate mutase activity, but mutase activity was inhibited both by L-phenylalanine and by prephenate. Interpretations are given about the physiological significance of the overall pattern of allosteric control of the P-protein, and the relationship between this control and the effector-induced molecular-weight transitions. The properties of the P-protein in Acinetobacter are considered within the context of the ubiquity of the P-protein within the phylogenetic cluster to which this genus belongs.  相似文献   

13.
Chromatography on DEAE cellulose equilibrated with Pipes buffer resolved three forms of chorismate mutase (CM) from tubers and leaves of Solanum tuberosum: CM-1A and CM-1B were activated by tryptophan and inhibited by phenylalanine and tyrosine; CM-2 was unaffected by these aromatic amino acids. When compared to freshly excised discs, 3 day old tuber discs demonstrated a 4.5-fold increase in CM-1 activity following wounding. By contrast, CM-2 activity levels were not affected by this treatment. In aged tuber discs the CM-1:CM-2 activity ratio was 9:1. However, in green leaves the CM-1:CM-2 activity ratio was 1:4 suggesting organ specific regulation for the expression of these isozymes. The CM-1 isozymes isolated from both tubers and leaves shared similar native molecular weight values of 55,000, Km values of 40 to 56 micromolar, and inhibition by phenylalanine (110-145 micromolar concentrations required for 50% inhibition) and tyrosine (50-70 micromolar concentrations required for 50% inhibition). The resolution of CM-1 into two forms occurred only in the presence of Pipes buffer. When this buffer was replaced with Aces, Bes, imidazole or Tris, only a single peak of CM-1 activity was observed. In these buffers CM-2 eluted as a shoulder on the CM-1 peak. Analytical isoelectric focusing of the CM-1 fraction followed by assay of the gel yielded only one form of CM-1 with an isoelectric point of 5.0. Gel filtration studies with Pipes buffer yielded molecular weights of 60,000 for both CM-1A and CM-1B indicating these forms are not the result of aggregation. The two forms of CM-1 may be artifacts generated by Pipes buffer.  相似文献   

14.
Highly purified enzymes from Alcaligenes eutrophus H 16 were used for kinetic studies. Chorismate mutase was feedback inhibited by phenylalanine. In the absence of the inhibitor, the double-reciprocal plot was linear, yielding a Km for chorismate of 0.2 mM. When phenylalanine was present, a pronounced deviation from the Michaelis-Menten hyperbola occurred. The Hill coefficient (n) was 1.7, and Hill plots of velocity versus inhibitor concentrations resulted in a value of n' = 2.3, indicating positive cooperativity. Chorismate mutase was also inhibited by prephenate, which caused downward double-reciprocal plots and a Hill coefficient of n = 0.7, evidence for negative cooperativity. The pH optimum of chorismate mutase ranged from 7.8 to 8.2; its temperature optimum was 47 C. Prephenate dehydratase was competitively inhibited by phenylalanine and activated by tyrosine. Tyrosine stimulated its activity up to 10-fold and decreased the Km for prephenate, which was 0.67 mM without effectors. Tryptophan inhibited the enzyme competitively. Its inhibition constant (Ki = 23 muM) was almost 10-fold higher than that determined for phenylalanine (Ki = 2.6 muM). The pH optimum of prephenate dehydratase was pH 5.7; the temperature optimum was 48 C. Prephenate dehydrogenase was feedback inhibited by tyrosine. Inhibition was competitive with prephenate (Ki = 0.06 mM) and noncompetitive with nicotinamide adenine dinucleotide. The enzyme was further subject to product inhibition by p-hydroxyphenylpyruvate (Ki = 0.13 mM). Its Km for prephenate was 0.045 mM, and that for nicotinamide adenine dinucleotide was 0.14 mM. The pH optimum ranged between 7.0 and 7.6; the temperature optimum was 38 C. It is shown how the sensitive regulation of the entire enzyme system leads to a well-balanced amino acid production.  相似文献   

15.
The gene encompassing ORF Rv1885c with weak sequence similarity to AroQ chorismate mutases (CMs) was cloned from the genome of Mycobacterium tuberculosis and expressed in Escherichia coli. The gene product (*MtCM) complements a CM-deficient E. coli strain, but only if produced without the predicted N-terminal signal sequence typical of M. tuberculosis. The mature *MtCM, which was purified by exploiting its resistance to irreversible thermal denaturation, possesses high CM activity in vitro. The enzyme follows simple Michaelis-Menten kinetics, having a k(cat) of 50 s(-1) and a K(m) of 180 microM (at 30 degrees C and pH 7.5). *MtCM was shown to be a dimer by analytical ultracentrifugation and size-exclusion chromatography. Secondary-structure prediction and CD spectroscopy confirmed that *MtCM is a member of the all-alpha-helical AroQ class of CMs, but it seems to have a topologically rearranged AroQ fold. Because CMs are normally intracellular metabolic enzymes required for the biosynthesis of phenylalanine and tyrosine, the existence of an exported CM in Gram-positive M. tuberculosis is puzzling. The observation that homologs of *MtCM with a predicted export sequence are generally only present in parasitic or pathogenic organisms suggests that secreted CMs may have evolved to participate in some aspect of parasitism or pathogenesis yet to be unraveled.  相似文献   

16.
Kynurenine pyruvate aminotransferase was purified from rat kidney. The purified enzyme had an isoelectric point of pH 5.2 and a pH optimum of 9.3. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors. L-Amino acids were effective in the following order of activity: histidine greather than phenylalanine greater than kynurenine greater than tyrosine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values were about 0.63 mM, 1.4 mM and 0.09 mM for histidine, kynurenine and phenylalanine, respectively. Km values for pyruvate were 5.5 mM with histidine as amino donor, 1.3 mM with kynurenine and 8.5 mM with phenylalanine. Kynurenine pyruvate aminotransferase activity of the enzyme was inhibited by the addition of histidine or phenylalanine. The molecular weights determined by gel filtration and sucrose density gradient centrifugation were approximately 76000 and 79000, respectively. On the basis of purification ratio, substrate specificity, inhibition by common substrates, subcellular distribution, isoelectric focusing and polyacrylamide-gel electrophoresis, it is suggested that kynurenine pyruvate aminotransferase is identical with histidine pyruvate aminotransferase and also with phenylalanine pyruvate aminotransferase. The physiological significance of the enzyme is discussed.  相似文献   

17.
In the aromatic amino acid biosynthesis pathway, chorismate presents a branch point intermediate that is converted to tryptophan, phenylalanine (Phe), and tyrosine (Tyr). In bacteria, three enzymes catalyze the conversion of chorismate to hydroxyphenylpyruvate or pyruvate. The enzymes, chorismate mutase (CM), prephenate dehydratase (PDT), and prephenate dehydrogenase (PDHG) are either present as distinct proteins or fusions combining two activities. Gene locus AF0227 of Archaeoglobus fulgidus is predicted to encode a fusion protein, AroQ, containing all three enzymatic domains. This work describes the first characterization of a trifunctional AroQ. The A. fulgidus aroQ gene was cloned and overexpressed in Escherichia coli. The recombinant protein purified as a homohexamer with specific activities of 10, 0.51, and 50 U/mg for CM, PDT, and PDHG, respectively. Tyr at 0.5 mM concentration inhibited PDHG activity by 50%, while at 1 mM PDT was activated by 70%. Phe at 5 μM inhibited PDT activity by 66% without affecting the activity of PDHG. A fusion of CM, PDT, and PDHG domains is evident in the genome of only one other organism sequenced to date, that of the hyperthermophilic archaeon, Nanoarchaeum equitans. Such fusions of contiguous activities in a biosynthetic pathway may constitute a primitive strategy for the efficient processing of labile metabolites.  相似文献   

18.
Rat prostate contains a unique androgen-dependent non-histone protein (Matuo et al. (1)). The non-histone protein was isolated in homogeneous form by extraction of nuclei from the dorsolateral prostate with 0.35 M NaCl in the presence of 1 mM PMSF and chromatography on a CM-Sepharose column. The final fraction was greater than 98% pure as judged by electrophoreses in SDS- and acid/urea-gels. The purified protein had a molecular weight of approximately 20,000, and an isoelectric point of approximately 11.5. Its absorption peak was at 276 nm and A(1%, 276nm)=9.3. The protein is characterized by the absence of cysteine, histidine and tryptophan, and by the high content of methionine, tyrosine and phenylalanine.  相似文献   

19.
The organ distribution of rat histidine-pyruvate aminotransferase isoenzymes 1 and 2 was examined by using an isoelectric-focusing technique. Isoenzyme 1 (pI8.0) is present only in the liver and its activity is increased by the injection of glucagon, whereas isoenzyme 2 (pI5.2) is distributed in all tissues (liver, kidney, brain and heart) tested, and is not affected by glucagon injection. Isoenzyme 2 of the liver, kidney, brain and heart was purified by the same procedure and characterized. Isoenzyme 2 preparations from these four tissues were nearly identical in physical and enzymic properties. These properties differed from those previously found for the highly purified isoenzyme 1 preparation of rat liver. Isoenzyme 2 was active with pyruvate but not with 2-oxoglutarate as amino acceptor. Amino donors were effective in the following order of activity: tyrosine greater than histidine greater than phenylalanine greater than kynurenine greater than tryptophan. Very little activity was found with 5-hydroxytryptophan. The apparent Km for histidine was about 0.45 mM. The Km for pyruvate was about 4.5 mM with histidine as amino donor. The amino-transferase activities of isoenzyme 2 towards phenylalanine and tyrosine were inhibited by histidine. The ratio of aminotransferase activities towards these three amino acids was constant through gel filtration, electrophoresis, isoelectric focusing and sucrose-density-gradient centrifugation of the purified isoenzyme 2 preparations. These results suggest that these three activities are properties of the same enzyme protein. Sephadex G-150 gel filtration and sucrose-density-gradient centrifugation yielded mol.wts. of approx. 95000 and 92000 respectively. The pH optimum was between 9.0 and 9.3.  相似文献   

20.
The bifunctional P protein (chorismate mutase: prephenate dehydratase) from Acinetobacter calcoaceticus has been purified. It was homogeneous in polyacrylamide gels and was more than 95% pure on the basis of the immunostaining of purified P protein with the antibodies raised against the P protein. The native enzyme is a homodimer (Mr = 91,000) composed of 45-kDa subunits. A twofold increase in the native molecular mass of the P protein occurred in the presence of L-phenylalanine (inhibitor of both activities) or L-tyrosine (activator of the dehydratase activity) during gel filtration. Chorismate mutase activity followed Michaelis-Menten kinetics with a Km of 0.55 mM for chorismate. L-Phenylalanine was a relatively poor non-competitive inhibitor of the mutase activity. The chorismate mutase activity was also competitively inhibited by prephenate (reaction product). Substrate-saturation curves for the dehydratase activity were sigmoidal showing positive cooperativity among the prephenate-binding sites. L-Tyrosine activated prephenate dehydratase strongly but did not abolish positive cooperativity with respect to prephenate. L-Phenylalanine inhibited the dehydratase activity, and the substrate-saturation curves became increasingly sigmoidal as phenylalanine concentrations were increased with happ values changing from 2.0 (no phenylalanine) to 4.0 (0.08 mM L-phenylalanine). A sigmoidal inhibition curve of the dehydratase activity by L-phenylalanine gave Hill plots having a slope of -2.9. Higher ionic strength increased the dehydratase activity by reducing the positive cooperative binding of prephenate, and the sigmoidal substrate-saturation curves were changed to near-hyperbolic form. The happ values decreased with increase in ionic strength. Antibodies raised against the purified P protein showed cross-reactivity with the P proteins from near phylogenetic relatives of A. calcoaceticus. At a greater phylogenetic distance, cross-reaction was superior with P protein from Neisseria gonorrhoeae than with that from the more closely related Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号