首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The genomic diversity of nine strains of the Lactococcus lactis subsp. cremoris (NCDO712, NCDO505, NCDO2031, NCDO763, MMS36, C2, LM0230, LM2301, and MG1363) was studied by macrorestriction enzyme analysis using pulsed-field gel electrophoresis. These strains were considered adequate for the investigation of genomic plasticity because they have been described as belonging to the same genetic lineage. Comparison of ApaI and SmaI genome fingerprints of each strain revealed the presence of several macrorestriction fragment length polymorphisms (RFLPs), despite a high degree of similarity of the generated restriction patterns. The physical map of the MG1363 chromosome was used to establish a genome map of the other strains and allocate the RFLPs to five regions. Southern hybridization analysis correlated the polymorphic regions with genetic events such as chromosomal inversion, integration of prophage DNA, and location of the transposon-like structures carrying conjugative factor or oligopeptide transport system.  相似文献   

2.
Lactococcus lactis DPC4275 is a bacteriocin-producing transconjugant of the industrial starter strain DPC4268. Strain DPC4275 was generated through conjugal transfer by mating DPC4268 with L. lactis MG1363 containing the 60-kb plasmid pMRC01, which encodes the genetic determinants for the lantibiotic lacticin 3147 and for a phage resistance mechanism of the abortive infection type. The many significant applications of this strain prompted a genetic analysis of its apparently unstable bacteriocin-producing phenotype. Increased levels of lacticin 3147 produced by DPC4275 were associated with the appearance of an 80-kb plasmid, designated pMRC02, which was derived from DNA originating from pMRC01 (60 kb) and a resident DPC4268 proteinase plasmid, pMT60 (60 kb). Indeed, pMRC02 was shown to be derived from the insertion of a 17-kb fragment of pMRC01, encompassing the lacticin 3147 operon, into pMT60. The presence of pMRC02 at a high copy number was found to correlate with increased levels of lacticin 3147 in DPC4275 compared to the wild-type containing pMRC01. Subsequent transfer of pMRC02 into the plasmid-free strain MG1363 by electroporation allowed a direct phenotypic comparison with pMRC01, also studied in the MG1363 background. Plasmid pMRC02 displayed phage resistance similar to that by pMRC01, although it was less potent, as demonstrated by a larger plaque size for phage c2 infection of MG1363(pMRC02). While this locus is flanked by IS946 elements, the sequencing of pMT60-pMRC01 junction sites established that this event was unlikely to be insertion sequence mediated and most probably occurred by homologous recombination followed by deletion of most of pMRC01. This was not a random occurrence, as nine other transconjugants investigated were found to have the same junction sites. Such derivatives of commercial strains producing increased levels of bacteriocin could be exploited as protection cultures for food applications.  相似文献   

3.
Insertion element ISD1, discovered when its transposition caused the insertional inactivation of an introduced sacB gene, is present in two copies in the genome of Desulfovibrio vulgaris Hildenborough. Southern blot analysis indicated at least two insertion sites in the sacB gene. Cloning and sequencing of a transposed copy of ISD1 indicated a length of 1,200 bp with a pair of 44-bp imperfect inverted repeats at the ends, flanked by a direct repeat of the 4-bp target sequence. AAGG and AATT were found to function as target sequences. ISD1 encodes a transposase from two overlapping open reading frames by programmed translational frameshifting at an A6G shifty codon motif. Sequence comparison showed that ISD1 belongs to the IS3 family. Isolation and analysis of the chromosomal copies, ISD1-A and ISD1-B, by PCR and sequencing indicated that these are not flanked by direct repeats. ISD1-A is inserted in a region of the chromosome containing the gapdh-pgk genes (encoding glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase). Active transposition to other loci in the genome was demonstrated, offering the potential of a new tool for gene cloning and mutagenesis. ISD1 is the first transposable element described for the sulfate reducers, a large and environmentally important group of bacteria. The distribution of ISD1 in genomes of sulfate-reducing bacteria is limited. A single copy is present in the genome of D. desulfuricans Norway.  相似文献   

4.
The new epidemic strain O139 of Vibrio cholerae, the etiologic agent of cholera, has probably emerged from the pandemic strain O1 El Tor through a genetic rearrangement involving the horizontal transfer of exogenous O-antigen- and capsule-encoding genes of unknown origin. In V. cholerae O139, these genes are associated with an insertion sequence designated IS1358O139. In this work, we studied the distribution of seven genes flanking the IS1358O139 element in 13 serovars of V. cholerae strains. All these O139 genes and an IS1358 element designated IS1358O22-1 were only found in V. cholerae O22 with a similar genetic organization. Sequence analysis of a 4.5-kb fragment containing IS1358022-1 and the adjacent genes revealed that these genes are highly homologous to those of V. cholerae O139. These results suggest that strains of V. cholerae O22 from the environment might have been the source of the exogenous DNA resulting in the emergence of the new epidemic strain O139.  相似文献   

5.
6.
The insertion sequence ISRm8 was identified by sequence analysis of the cryptic plasmid pRmeGR4b of Sinorhizobium meliloti GR4. ISRm8 is 1451 bp in length and carries 22/24-bp terminal imperfect inverted repeats with seven mismatches and a direct target site duplication of 3 bp. ISRm8 carries a unique open reading frame whose putative protein showed significant similarity to the insertion sequences IS1357 and IS1452, isolated from Methylobacterium sp. and Acetobacter pasteurianus, respectively. Two copies of this IS element were found in strain GR4; one of them is linked to plasmid pRmeGR4b, whereas the other is localized out of the non-pSym plasmids. In S. meliloti field populations ISRm8 shows a limited distribution (50% of the strains tested carry the IS element), with a copy number ranging from 1 to 6.  相似文献   

7.
Common cloning is often associated with instability of certain classes of DNA. Here we report on IS1 transposition as possible source of such instability. During the cloning of Arabidopsis thaliana gene into commercially available vector maintained in widely used Escherichia coli host the insertion of complete IS1 element into the intron of cloned gene was found. The transposition of the IS1 element was remarkably rapid and is likely to be sequence-specific. The use of E. coli strains that lower the copy number of vector or avoiding the presence of the problematic sequence is a solution to the inadvertent transposition of IS1. The transposition of IS1 is rare but it can occur and might confound functional studies of a plant gene.  相似文献   

8.
We describe here a repetitive chromosomal element, which appears to be an insertion sequence, isolated from Clavibacter xyli subsp. cynodontis, a gram-positive plant-associated bacterium. The element, IS1237, is 905 bp in size, is bounded by 19-bp perfect inverted repeats and 3-bp direct repeats, and appears at least 16 times in the genome. It contains three open reading frames which show similarity to open reading frames from various other insertion sequences. We have found that there are two groups of related mobile elements: one in which two open reading frames are read separately and the other in which these two open reading frames are fuse together to give one predicted protein product. Using one of these open reading frames to search amino acid sequence databases, we found two instances in which similar reading frames flank genes carried on plasmids. We believe therefore that these plasmid-borne genes may be parts of previously unidentified mobile elements. For IS1237, a frameshift in two of the open reading frames and a stop codon in the third may indicate that this particular copy of the element is no longer active in transposition. The similarity of IS1237 to other elements from both gram-negative and gram-positive bacteria provides further evidence that mobile elements have been transferred between these two bacterial groups.  相似文献   

9.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of α-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced α-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

10.
We describe the first functional insertion sequence (IS) element in Lactobacillus plantarum. ISLpl1, an IS30-related element, was found on the pLp3 plasmid in strain FB335. By selection of spontaneous mutants able to grow in the presence of uracil, it was demonstrated that the IS had transposed into the uracil phosphoribosyltransferase-encoding gene upp on the FB335 chromosome. The plasmid-carried IS element was also sequenced, and a second potential IS element was found: ISLpl2, an IS150-related element adjacent to ISLpl1. When Southern hybridization was used, the copy number and genome (plasmid versus chromosome) distribution data revealed different numbers and patterns of ISLpl1-related sequences in different L. plantarum strains as well as in Pediococcus strains. The ISLpl1 pattern changed over many generations of the strain L. plantarum NCIMB 1406. This finding strongly supports our hypothesis that ISLpl1 is a mobile element in L. plantarum. Database analysis revealed five quasi-identical ISLpl1 elements in Lactobacillus, Pediococcus, and Oenococcus strains. Three of these elements may be cryptic IS, since point mutations or 1-nucleotide deletions were found in their transposase-encoding genes. In some cases, ISLpl1 was linked to genes involved in cold shock adaptation, bacteriocin production, sugar utilization, or antibiotic resistance. ISLpl1 is transferred among lactic acid bacteria (LAB) and may play a role in LAB genome plasticity and adaptation to their environment.  相似文献   

11.
12.
From Bradyrhizobium japonicum highly reiterated sequence-possessing (HRS) strains indigenous to Niigata and Tokachi in Japan with high copy numbers of the repeated sequences RSα and RSβ (K. Minamisawa, T. Isawa, Y. Nakatsuka, and N. Ichikawa, Appl. Environ. Microbiol. 64:1845–1851, 1998), several insertion sequence (IS)-like elements were isolated by using the formation of DNA duplexes by denaturation and renaturation of total DNA, followed by treatment with S1 nuclease. Most of these sequences showed structural features of bacterial IS elements, terminal inverted repeats, and homology with known IS elements and transposase genes. HRS and non-HRS strains of B. japonicum differed markedly in the profiles obtained after hybridization with all the elements tested. In particular, HRS strains of B. japonicum contained many copies of IS1631, whereas non-HRS strains completely lacked this element. This association remained true even when many field isolates of B. japonicum were examined. Consequently, IS1631 occurrence was well correlated with B. japonicum HRS strains possessing high copy numbers of the repeated sequence RSα or RSβ. DNA sequence analysis indicated that IS1631 is 2,712 bp long. In addition, IS1631 belongs to the IS21 family, as evidenced by its two open reading frames, which encode putative proteins homologous to IstA and IstB of IS21, and its terminal inverted repeat sequences with multiple short repeats.  相似文献   

13.
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.  相似文献   

14.
15.
A new insertion sequence (IS) designated IS1474 was isolated from Pseudomonas alcaligenes NCIB 9867 (P25X). IS1474 is a 2632 bp element which showed a characteristic IS structure with 12 bp inverted repeats (IRs) flanking a 2608 bp central region. IS1474 contained four open reading frames (ORF1–ORF4), two in each orientation. Similarities were detected between ORF1 and ORF2 and the putative transposases of the IS21 family. Sequences upstream from IS1474 were found to display up to 89% homology with IS53 from Pseudomonas syringae suggesting that IS1474 had inserted into another related IS element designated IS1475. An open reading frame, ORF5, located at the junction of IS1474 and IS1475, showed similarities with the IstB protein of IS21 and could possibly be the transposase subunit of IS1475. Transposition assays showed that IS1474 transposed at a relatively low frequency leading to cointegration with target plasmids. Hybridization studies showed that IS1474 is present in at least 13 copies in the chromosome of P25X and one copy on its endogenous plasmid.  相似文献   

16.
The new epidemic serovar O139 of Vibrio cholerae has emerged from the pandemic serovar O1 biotype El Tor through the replacement of a 22-kbp DNA region by a 40-kbp O139-specific DNA fragment. This O139-specific DNA fragment contains an insertion sequence that was described previously (U. H. Stroeher, K. E. Jedani, B. K. Dredge, R. Morona, M. H. Brown, L. E. Karageorgos, J. M. Albert, and P. A. Manning, Proc. Natl. Acad. Sci. USA 92:10374–10378, 1995) and designated IS1358O139. We studied the distribution of the IS1358 element in strains from various serovars by Southern analysis. Its presence was detected in strains from serovars O1, O2, O22, O139, and O155 but not in strains from serovars O15, O39, and O141. Furthermore, IS1358 was present in multiple copies in strains from serovars O2, O22, and O155. We cloned and sequenced four copies of IS1358 from V. cholerae O22 and one copy from V. cholerae O155. A comparison of their nucleotide sequences with those of O1 and O139 showed that they were almost identical. We constructed a transposon consisting of a kanamycin resistance gene flanked by two directly oriented copies of IS1358 to study the functionality of this element. Transposition of this element from a nonmobilizable plasmid onto the conjugative plasmid pOX38-Gen was detected in an Escherichia coli recA donor at a frequency of 1.2 × 10−8. Sequence analysis revealed that IS1358 duplicates 10 bp at its insertion site.  相似文献   

17.
The ipl locus is a site for the preferential insertion of IS6110 and has been identified as an insertion sequence, IS1547, in its own right. Various deletions around the ipl locus of clinical isolates of Mycobacterium tuberculosis were identified, and these deletions ranged in length from several hundred base pairs up to several kilobase pairs. The most obvious feature shared by these deletions was the presence of an IS6110 copy at the deletion sites, which suggested two possible mechanisms for their occurrence, IS6110 transposition and homologous recombination. To clarify the mechanism, an investigation was conducted; the results suggest that although deletion transpositionally mediated by IS6110 was a possibility, homologous recombination was a more likely one. The implications of such chromosomal rearrangements for the evolution of M. tuberculosis, for IS6110-mediated mutagenesis, and for the development of genetic tools are discussed. The deletion of genomic DNA in isolates of M. tuberculosis has previously been noted at only a few sites. This study examined the deletional loss of genetic material at a new site and suggests that such losses may occur elsewhere too and may be more prevalent than was previously thought. Distinct from the study of laboratory-induced mutations, the detailed analysis of clinical isolates, in combination with knowledge of their evolutionary relationships to each other, gives us the opportunity to study mutational diversity in isolates that have survived in the human host and therefore offers a different perspective on the importance of particular genetic markers in pathogenesis.  相似文献   

18.
A physical and genetic map of the chromosome of the Lactococcus lactis subsp. cremoris reference strain MG1363 was established. The physical map was constructed for NotI, ApaI, and SmaI enzymes by using a strategy that combines creation of new rare restriction sites by the random-integration vector pRL1 and ordering of restriction fragments by indirect end-labeling experiments. The MG1363 chromosome appeared to be circular and 2,560 kb long. Seventy-seven chromosomal markers were located on the physical map by hybridization experiments. Integration via homologous recombination of pRC1-derived plasmids allowed a more precise location of some lactococcal genes and determination of their orientation on the chromosome. The MG1363 chromosome contains six rRNA operons; five are clustered within 15% of the chromosome and transcribed in the same direction. Comparison of the L. lactis subsp. cremoris MG1363 physical map with those of the two L. lactis subsp. lactis strains IL1403 and DL11 revealed a high degree of restriction polymorphism. At the genetic organization level, despite an overall conservation of gene organization, strain MG1363 presents a large inversion of half of the genome in the region containing the rRNA operons.  相似文献   

19.
We describe the characterization of a new insertion sequence, IS1515, identified in the genome of Streptococcus pneumoniae I41R, an unencapsulated mutant isolated many years ago (R. Austrian, H. P. Bernheimer, E. E. B. Smith, and G. T. Mills, J. Exp. Med. 110:585–602, 1959). A copy of this element located in the cap1EI41R gene was sequenced. The 871-bp-long IS1515 element possesses 12-bp perfect inverted repeats and generates a 3-bp target duplication upon insertion. The IS encodes a protein of 271 amino acid residues similar to the putative transposases of other insertion sequences, namely IS1381 from S. pneumoniae, ISL2 from Lactobacillus helveticus, IS702 from the cyanobacterium Calothrix sp. strain PCC 7601, and IS112 from Streptomyces albus G. IS1515 appears to be present in the genome of most type 1 pneumococci in a maximum of 13 copies, although it has also been found in the chromosome of pneumococcal isolates belonging to other serotypes. We have found that the unencapsulated phenotype of strain I41R is the result of both the presence of an IS1515 copy and a frameshift mutation in the cap1EI41R gene. Precise excision of the IS was observed in the type 1 encapsulated transformants isolated in experiments designed to repair the frameshift. These results reveal that IS1515 behaves quite differently from other previously described pneumococcal insertion sequences. Several copies of IS1515 were also able to excise and move to another locations in the chromosome of S. pneumoniae. To our knowledge, this is the first report of a functional IS in pneumococcus.  相似文献   

20.
Hereditary protein S deficiency from a mutation in the PROS1 gene causes a genetic predisposition to develop venous thromboembolic disorders in humans. Recently, the acknowledgment of the clinical significance of large copy number mutations in protein S deficiency has increased. In this study, the authors investigated the genomic architecture of PROS1 in order to understand the microscopic sequence environment leading to large intragenic copy number mutations in the gene. The study subjects were 3 unrelated male patients with hereditary protein S deficiency from a tandem duplication mutation involving exons 5–10 of PROS1. Breakpoint analyses revealed 10-bp microhomology sequences in the intervening sequence (IVS)-4 and IVS-10 at the duplication junction without additional sequence changes, suggesting a single replication-based event as the potential molecular mechanism of rearrangement and founder effect in the mutant alleles. Further analyses on nucleotide sequences flanking the microhomology sequence revealed the presence of a repeat element (LTR-ERV1) and quadruplex-forming G-rich sequences in IVS-4. The results from genotyping multi-allelic short tandem repeats supported founder effect in the identical mutations in the 3 unrelated patients. In conclusion, we identified unique genomic architectures in the intervening sequences of PROS1 that underlie a large intragenic tandem duplication mutation leading to inherited thrombophilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号