首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The responses of photochemical efficiency to desiccation and salinity gradients in an intertidal edible brown macroalga, Sargassum fusiforme (Harvey) Setchell (Sargassaceae, Fucales), were determined using a pulse amplitude modulation (PAM)-chlorophyll fluorometer. The effective quantum yields (ΔF/Fm'; = ΦPSII) of photosystem II (PSII) dropped to zero after 360-min aerial exposure under low irradiance (20 μmol photons m−2 s−1) and 120-min exposure under high irradiance (700 μmol photons m−2 s−1) for this species at 20°C and 50% relative humidity. Under these conditions, ΔF/Fm' failed to recover to initial levels even after 1-day rehydration in seawater. In general, ΔF/Fm' decreased as desiccation reduced the absolute water content (AWC, %). Nevertheless, when AWC was above ca. 20%, ΔF/Fm' was mostly restored to initial levels after 1-day rehydration in seawater, suggesting strong tolerance to dehydration. Furthermore, S. fusiforme appeared to tolerate a broad range of salinity (i.e. 15–50 psu) during six days of culture; however, ΔF/Fm' declined when salinity was <10 and 60 psu. Strong tolerance to dehydration and salinity stress likely provides S. fusiforme an advantage that allows it to flourish in the intertidal habitat.  相似文献   

2.
The effect of temperature, light-spectrum, desiccation and salinity gradients on the photosynthesis of a Japanese subtidal brown alga, Sargassum macrocarpum (Fucales), was determined using a pulse amplitude modulation-chlorophyll fluorometer and dissolved oxygen sensors. Temperature responses of the maximum (Fv/Fm in darkness) and effective (ΔF/Fm at 50 μmol photons m−2 s−1; = ΦPSII) quantum yields during 6-day culture (4–36°C) remained high at 12–28°C, but decreased at higher temperatures. Nevertheless, ΔF/Fm also dropped at temperatures below 8°C, suggesting light sensitivity under chilling temperatures because Fv/Fm remained high. Photosynthesis–irradiance responses at 24°C under red (660 nm), green (525 nm), blue (450 nm) and white light (metal halide lamp) showed that maximum net photosynthesis under blue and white light was greater than under red and green light, indicating the sensitivity and photosynthetic availability of blue light in the subtidal light environment. In the desiccation experiment, samples under aerial exposure of up to 8 h under dim-light at 24°C and 50% humidity showed that ΔF/Fm quickly declined after more than 45 min of emersion; furthermore, ΔF/Fm also failed to recover to initial levels even after 1 day of rehydration in seawater. Under the emersion state, the ΔF/Fm remained high when the relative water content (RWC) was greater than 50%; in contrast, it quickly dropped when the RWC was less than 50%. When the RWC was reduced below 50%, ΔF/Fm did not return to initial levels, regardless of subsequent re-hydration, suggesting a low capacity of photosynthesis to recover from desiccation. The stenohaline response of photosynthesis under 3-day culture is evident, given that ΔF/Fm declined when salinity was beyond 20–40 psu. Adaptation to subtidal environments in temperate waters of Japan can be linked to these traits.  相似文献   

3.
The effects of irradiance, temperature, thermal‐ and chilling‐light sensitivities on the photosynthesis of a temperate alga, Sargassum macrocarpum (Fucales) were determined by a pulse amplitude modulation (PAM)‐chlorophyll fluorometer and dissolved oxygen sensors. Oxygenic photosynthesis–irradiance curves at 8, 20, and 28°C revealed that the maximum net photosynthetic rates (NP max) and saturation irradiance were highest at 28°C, and lowest at 8°C. Gross photosynthesis and dark respiration determined over a range of temperatures (8–36°C) at 300 μmol photons m?2 s?1 revealed that the maximum gross photosynthetic rate (GPmax) occurred at 27.8°C, which is consistent with the highest seawater temperature in the southern distributional limit of this species in Japan. Additionally, the maximum quantum yields of photosystem II (F v/F m) during the 72‐h temperature exposures were stable at 8–28°C, but suddenly dropped to zero at higher temperatures, indicative of PSII deactivation. Continuous exposure (12 h) to irradiance of 200 (low) and 1000 (high) μmol photons m?2 s?1 at 8, 20, and 28°C revealed greater declines in their effective quantum yields (Φ PSII) under high irradiance. While Φ PSII under low irradiance were very similar with the initial F v/F m under 20 and 28°C, values rapidly decreased with exposure duration at 8°C. At this temperature, F v/F m did not recover to initial values even after 12 h of dark acclimation. Final F v/F m of alga at 28°C under high irradiance treatment also did not recover, suggesting its sensitivity to photoinhibition at both low and high temperatures. These photosynthetic characteristics reflect both the adaptation of the species to the general environmental conditions, and its ability to acclimate to seasonal changes in seawater temperature within their geographical range of distribution.  相似文献   

4.
Understanding of the physiological responses of kelp to environmental parameters is crucial, especially in the context of environmental change that may have contributed to the decline of kelp forests all over the world. The current study presents the photosynthetic characteristics of the macroscopic sporophyte and microscopic gametophyte stages of the brown alga Alaria crassifolia from Hokkaido, Japan, as determined by examining their photosynthetic responses over a range of temperature and irradiance using dissolved oxygen and chlorophyll fluorescence measurements. Net photosynthetic rates of the sporophyte were consistently higher than those of gametophyte across temperature gradients and irradiance levels. Photosynthesis–irradiance curves at 8°C, 16°C, and 20°C revealed similar initial slopes (α = 0.4–0.9) on the two life history stages, but higher compensation (E c = 4–7 μmol photons m?2 s?1) and saturation irradiances (E k = 53–103 μmol photons m?2 s?1) for the sporophyte than for the gametophyte (E c = 0–7 μmol photons m?2 s?1; E k = 7–10 μmol photons m?2 s?1). Both stages exhibited chronic photoinhibition, as shown by the failure of recovery in their maximum quantum yields (F v/F m) following high irradiance stress, with greater possibility of photodamage at low temperature. Gametophytes were less sensitive to low temperatures than sporophytes, given their relatively stable F v/F m response. Nevertheless, temperature optima for photosynthesis of both stages coincide with each other at 20–23°C, which correspond to the growth and maturation periods of A. crassifolia in Japan. This species is also likely to suffer from thermal inhibition as both GP rates and F v/F m decreased above 24°C.  相似文献   

5.
Temperature and irradiance are the most important factors affecting marine benthic microalgal photosynthetic rates in temperate intertidal areas. Two temperate benthic diatoms species, Amphora cf. coffeaeformis (C. Agardh) Kütz. and Cocconeis cf. sublittoralis Hendey, were investigated to determine how their photosynthesis responded to temperatures ranging from 5°C to 50°C after short‐term exposure (1 h) to a range of irradiance levels (0, 500, and 1,100 μmol photons · m?2 · s?1). Significant differences were observed between the temperature responses of maximum relative electron transport rate (rETRmax), photoacclimation index (Ek), photosynthetic efficiency (α), and effective quantum yield (ΔF/Fm’) in both species. A. coffeaeformis had a greater tolerance to higher temperatures than C. sublittoralis, with nonphotochemical quenching (NPQ) activated at temperatures of 45°C and 50°C. C. sublittoralis, however, demonstrated a more rapid rate of recovery at ambient temperatures. Temperatures between 10°C and 20°C were determined to be optimal for photosynthesis for both species. High temperatures and irradiances caused a greater decrease in ΔF/Fm’ values. These results suggest that the effects of temperature are species specific and that short‐term exposure to adverse temperature slows the recovery process, which subsequently leads to photoinhibition.  相似文献   

6.
The physiological ecology of Prasiola stipitata was examined in situ from two supralittoral sites in the Bay of Fundy (Nova Scotian, Canada) during November 2011, when the population was undergoing major expansion. Photosynthetic parameters (effective quantum yield, ΦPSII, maximum quantum yield, Fv/Fm, and relative electron transport rate, rETR) were evaluated using chlorophyll fluorescence of PSII. A largely shaded and continuously moist population showed no change in ΦPSII from one hour after sunrise to sunset in which natural irradiance varied between 3 and 300 μmol photons m?2 s?1. High irradiance (up to 1800 μmol photons m?2 s?1) had no apparent negative impacts on either quantum yield or rETR, but high desiccation in the field reduced quantum yield to almost zero. When thalli were brought into the laboratory, no change in Fv/Fm was observed up to 60% dehydration; however, there was a steep decline in Fv/Fm between 60% and 85% dehydration. Thalli showed complete recovery of Fv/Fm within one hour of reimmersion in seawater after 2 days of desiccation. After 15 days of desiccation full recovery required 24 h and after 30 days of desiccation thalli showed only partial recovery. These observations confirm the adaptation to photosynthesis in high irradiances and the rapid recovery following extreme desiccation observed in other Prasiola species.  相似文献   

7.
We determined the effect of irradiance and temperature on the photosynthesis of two heteromorphic life‐history stages of an endangered freshwater red alga, Thorea gaudichaudii (Thoreales) by laboratory and field measurements. Net oxygenic photosynthesis–irradiance models of macroscopic and microscopic life‐history stages revealed similar low irradiance‐adapted responses, with a compensation irradiance (Ec) of 6.71 and 2.56 μmol photons m?2 s?1 (4.30–9.13 and 0.13–7.19, 95% Bayesian prediction interval, BPI) and saturating irradiance (Ek) of 26.6 and 30.0 μmol photons m?2 s?1 (19.0–37.4 and 12.1–63.0, BPI), respectively. A temperature‐dependent model of net photosynthesis and dark respiration in macroscopic and microscopic stages also showed similar temperature responses, and the gross photosynthetic rate (GPmax), 3.54 and 6.34 μg O2 gww?1 min?1 (3.10–3.99 and 5.31–8.21, BPI), was highest at 32.1 and 35.7°C (29.8–34.0 and 29.5–48.6, BPI). The maximum quantum yields (F v/F m) in macroscopic and microscopic stages were also similar in response with respect to temperature; however, it was somewhat steady at low temperatures with the highest value of 0.54 and 0.62 (0.54–0.55 and 0.61–0.63, BPI) at 17.8 and 15.0°C (16.7–18.8 and 12.3–17.1, BPI). The effective quantum yield (Φ PSII) in macroscopic and microscopic stages was also negatively correlated with irradiance, which decreased after 12 h of continuous exposure to 50 (low) and 1000 (high) μmol photons m?2 s?1 at 12 and 22°C. Large declines of Φ PSII and subsequent failure of F v/F m recovery were particularly enhanced at high irradiance, signifying photoinhibition. Diurnal change of Φ PSII and incident irradiance of the macroscopic stage under the field measurement revealed the midday depression of Φ PSII; however, there was little direct sunlight due to shading by the trees, and algae were occurring in the shaded locations in the freshwater spring.  相似文献   

8.
Ulothrix zonata (Weber and Mohr) Kütz. is an unbranched filamentous green alga found in rocky littoral areas of many northern lakes. Field observations of its seasonal and spatial distribution indicated that it should have a low temperature and a high irradiance optimum for net photosynthesis, and at temperatures above 10°C it should show an increasingly unfavorable energy balance. Measurements of net photosynthesis and respiration were made at 56 combinations of light and temperature. Optimum conditions were 5°C and 1100 μE·m?2·s?1 at which net photosynthesis was 16.8 mg O2·g?1·h?1. As temperature increased above 5° C optimum irradiance decreased to 125 μE·m?2·s?1 at 30°C. Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiance exposures of 125 μE·m?2·s?1 or greater. Polynomials were fitted to the data to generate response surfaces. Polynomial equations represent statistical models which can accurately predict photosynthesis and respiration for inclusion in ecosystem models.  相似文献   

9.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

10.
Knowledge concerning the effects of several abiotic factors on the physiology of carrageenophytes is essential both in ecological and economic standpoints, to ensure their sufficient supply for the sustainability of seaweed‐based industries. This paper presents the photosynthetic characteristics of farmed carrageenophytes, E ucheuma denticulatum and K appaphycus alvarezii [brown (BRN) and green (GRN) color morphotypes] from Sulawesi Utara (Sulawesi Island), Indonesia, as determined by examining their photosynthetic response across different temperatures and irradiances using dissolved oxygen measurements and pulse‐amplitude modulated fluorometer. Net photosynthesis–irradiance ( P E ) curves at 26°C revealed that net photosynthetic rates of the three seaweeds gradually increased until the estimated saturation irradiances ( E k ) of 58 μmol photons m? 2 s?1 (49–68 μmol photons m? 2 s?1, 95% Bayesian prediction intervals; BPI) for E . denticulatum, and 158 and 143 μmol photons m? 2 s?1 (134–185 and 99–203 μmol photons m? 2 s?1, 95% BPI) for BRN and GRN K . alvarezii, respectively; and that no photoinhibition was observed at the highest irradiance of 1000 μmol photons m? 2 s?1. All seaweed samples exhibited photosynthetic tolerance to high PAR as shown by their recovery in maximum quantum yields (Fv / Fm ) following chronic exposures; as well as tolerance over a broad range of temperature, which is from 19 to 33°C for E . denticulatum, 20–29°C for BRN K . alvarezii, and 17–32°C for GRN K . alvarezii. Temperature responses of these carrageenophytes indicated that they were well‐adapted to the annual seawater temperatures in the cultivation site; however, they are also likely close to threshold levels for thermal inhibition, given the decline in Fv / Fm above 30°C.  相似文献   

11.
In January and February 2010, heavy sea ice formed along the coast of the Bohai Sea and the northern Yellow Sea, China. Intertidal organisms were subjected to serious freezing stress. In this study, we investigated the freezing tolerance of the upper intertidal economic seaweed Porphyra yezoensis. The maximum photochemical efficiency of PS II (F v/F m) in undehydrated thalli remained high after 24 h at −2°C and that in dehydrated thalli decreased in a proportion to thallial water loss. F v/F m dropped sharply after 24 h at −20°C, regardless of absolute cellular water content (AWC). The F v/F m in frozen thalli recovered rapidly at 0–20°C. A wide range of water loss in the thalli enhanced their tolerance to freezing. F v/F m values in undehydrated thalli dropped sharply after 3 d at −2°C or 10 d at −20°C while those in dehydrated thalli (20–53% AWCs) remained at high levels after 9 d at −2°C or 30 d at −20°C. These results indicate that P. yezoensis has high freezing tolerance by means of dehydration during the ebb tide and rapid recovery of F v/F m from freezing. A strategy of P. yezoensis industry to avoid heavy loss during freezing season is discussed based on these findings.  相似文献   

12.
The survival of dipterocarp seedlings in the understorey of south‐east Asian rain forests is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain. Field measurements demonstrated that Shorea leprosula seedlings in a rain forest understorey received a high proportion of daily photon flux density at temperatures supra‐optimal for photosynthesis (72% at ≥30 °C, 14% at ≥35 °C). To investigate the effect of high temperatures on photosynthesis during sunflecks, gas exchange and chlorophyll fluorescence measurements were made on seedlings grown in controlled environment conditions either, under uniform, saturating irradiance (approximately 539 µmol m?2 s?1) or, shade/fleck sequences (approximately 30 µmol m?2 s?1/approximately 525 µmol m?2 s?1) at two temperatures, 28 or 38 °C. The rate of light‐saturated photosynthesis, under uniform irradiance, was inhibited by 40% at 38 °C compared with 28 °C. However, during the shade/fleck sequence, photosynthesis was inhibited by 59% at 38 °C compared with 28 °C. The greater inhibition of photosynthesis during the shade/fleck sequence, when compared with uniform irradiance, was driven by the lower efficiency of dynamic photosynthesis combined with lower steady‐state rates of photosynthesis. These results suggest that, contrary to current dogma, sunfleck activity may not always result in significant carbon gain. This has important consequences for seedling regeneration processes in tropical forests as well as for leaves in other canopy positions where sunflecks make an important contribution to total photon flux density.  相似文献   

13.
The rates of net photosynthesis as a function of irradiance and temperature were determined for gametophytes and embryonic sporophytes of the kelp, Macrocystis pyrifera (L.) C. Ag. Gametophytes exhibited higher net photosynthetic rates based on oxygen and pH measurements than their derived embryonic sporophytes, but reached light saturation at comparable irradiance levels. The net photosynthesis of gametophytes reached a maximum of 66.4 mg O2 g dry wt?1 h?1 (86.5 mg CO2 g dry wt?1 h?1), a value approximately seven times the rate reported previously for the adult sporophyte blades. Gametophytes were light saturated at 70 μE m?2 s?1 and exhibited a significant decline in photosynthetic performance at irradiances 140 μE m?1 s?1. Embryonic sporophytes revealed a maximum photosynthetic capacity of 20.6 mg O2 g dry wt?1 h?1 (25.3 mg CO2 g dry wt?1 h?1), a rate about twice that reported for adult sporophyte blades. Embryonic sporophytes also became light saturated at 70 μE m?2 s?1, but unlike their parental gametophytes, failed to exhibit lesser photosynthetic rates at the highest irradiance levels studied; light compensation occurred at 2.8 μE m?2 s?1. Light-saturated net photosynthetic rates of gametophytes and embryonic sporophytes varied significantly with temperature. Gametophytes exhibited maximal photosynthesis at 15° to 20° C, whereas embryonic sporophytes maintained comparable rates between 10° and 20° C. Both gametophytes and embryonic sporophytes declined in photosynthetic capacity at 30° C. Dark respiration of gametophytes was uniform from 10° to 25° C, but increased six-fold at 30° C; the rates for embryonic sporophytes were comparable over the entire range of temperatures examined. The broader light and temperature tolerances of the embryonic sporophytes suggest that this stage in the life history of M. pyrifera is well suited for the subtidal benthic environment and for the conditions in the upper levels of the water column.  相似文献   

14.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

15.
The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high‐quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance‐saturated rate of photosynthesis (Pmax) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2 · g?1FW · h?1 at 12°C to 70 μmol O2 · g?1FW · h?1 at 26°C). The irradiance compensation point for photosynthesis (Ic) decreased significantly with increasing temperature (28 μmol photons · m?2 · s?1 at high temperature vs. 38 μmol photons · m?2 · s?1 at low temperature). Both the photosynthetic light‐ and carbon‐use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.  相似文献   

16.
Michael Hickman 《Ecography》1978,1(4):337-350
Cooking Lake (113°02′W, 53°26′N), a well-mixed, shallow (mean depth (1.59 m), eutrophic lake in Alberta, Canada, is characterized by eutrophic chlorococcalean and cyanophycean phytoplankton associations, and little change in standing crop with increasing depth. Standing crop and primary productivity are low during the winter but pronounced spring and summer maxima occur. Mean yearly areal standing crop (ΔB) and primary productivity (ΔA) were 212.4 mg m?2 chlorophyll a and 301.8 mg C h?1 m?2 respectively. Annual productivity was estimated at 1322 g C m?2. The mean increase in the extinction coefficient (?) per unit increase in standing crop (B) was 0.03 In units m?1. High non-algal light attenuation (?q) occurred avenging 41 which prevented the ratio B/? from attaining more than 65% of the theoretical maximum except once when algal self-shading occurred. Close correlations existed between B (mg m?3 chlorophyll a) and A max (mg h?1 m?3) ΔA and ΔB, ΔA and B, Amax, and Amax/?, and ΔA and Io′, (W m?2). The depth of the euphotic zone (Zeu) varied between 0.5 and 1 25 m; the average relationship between zeu and E was Zeu= 3.74/?, and the mean standing Crop found in the euphotic zone represented 55.2% of the theoretical maximum, The high ?q, values made the model of Tailing (1957) inapplicable to Cooking Lake. The Q10 value for the lake was 2.2. The maximum rate of photosynthesis per unit of population per h. Ømax, (mg C sag chlorophyll a?1 h?1) was more closely related to temperature than irradiance and ma depressed by pH values greater than 9.1. Growth of the phytoplankton was not nutrient limited: instead irradiance and temperature were more important. Indirect evidence that free CO2 limited photosynthetic rates, is provided by the Ømax: pH relationship.  相似文献   

17.
Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m?2 s?1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m?2 s?1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m?2 s?1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m–2 s–1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21–32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m–2 s–1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition.  相似文献   

18.
How are microphytobenthic biofilms adapted to the high incident irradiances and temperatures, low inorganic nutrient concentrations and high desiccation stresses on intertidal flats present in tropical environments? This study investigated biofilms subject to different environmental conditions in a range of tropical sites in Suva lagoon, Fiji. PAM fluorescence was used to measure photophysiological responses to the light climate. Biofilm colloidal carbohydrate, extracellular polymeric substances (EPS) and low molecular weight (MW) carbohydrate concentrations and diel carbohydrate production patterns were measured. Average biomass (Chl a) ranged from 15 to 36?mg?m?2, and was highest in seagrass bed sediments, but biomass was not correlated with water column or sediment porewater nutrient concentrations. Biofilm photophysiology differed significantly along a combined gradient of light and nutrient availability, with F v/F m, relative ETRmax and E k of biofilms highest in mangrove and intertidal main island sites and lowest in subtidal coral reef flats. Subtidal biofilms showed photoinhibition at irradiances > 1000?µmol?m?2. Significant correlations between Chl a and colloidal carbohydrate concentrations were present (except on intertidal sandflats), and tropical biofilms had higher ratios of colloidal carbohydrate and EPS to Chl a than temperate estuarine biofilms, probably due to a combination of high irradiance and low nutrient availability leading to the production of excess photoassimilates. The percentage of EPS present in the colloidal fraction was highest in coral sand biofilms (42%), which had the lowest nutrient concentrations, compared with other sites (25–32%). Intertidal biofilms predominantly consisted of large motile taxa and showed strong rhythms of vertical migration. During tidal emersion, high sediment temperatures (41?°C), irradiance (>2300?µmol?m?2?s?1) and salinity (49‰) stimulated downward migration. In silty sediments, migration resulted in a reduction in photosynthetic activity during the midday period but, in sands with high light penetration (to a depth of > 1700?µm), high production rates of EPS (18.2?µg carbo. µg Chl a?1 h?1) and low MW carbohydrate exudates (40.2?µg carbo. µg Chl a?1 h?1) occurred. Vertical migration, high E k and high rates of photoassimilate dumping are all adaptations to living in the tropical intertidal zone. Seagrass and reef flat biofilms consisted of a diverse non-migratory flora of motile and non-motile taxa that were not subject to such extreme temperature and irradiance conditions. Low values of photosynthetic parameters and high colloidal and EPS content indicated that these biofilms were nutrient-limited.  相似文献   

19.
The mechanisms controlling the photosynthetic performance of C4 plants at low temperature were investigated using ecotypes of Bouteloua gracilis Lag. from high (3000 m) and low (1500 m) elevation sites in the Rocky Mountains of Colorado. Plants were grown in controlled‐environment cabinets at a photon flux density of 700 μ mol m?2 s?1 and day/night temperatures of 26/16 °C or 14/7 °C. The thermal response of the net CO2 assimilation rate (A) was evaluated using leaf gas‐exchange analysis and activity assays of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPCase) and pyruvate,orthophosphate dikinase (PPDK). In both ecotypes, a reduction in measurement temperature caused the CO2‐saturated rate of photosynthesis to decline to a greater degree than the initial slope of A versus the intercellular CO2 response, thereby reducing the photosynthetic CO2 saturation point. As a consequence, A in normal air was CO2‐saturated at sub‐optimal temperatures. Ecotypic variation was low when grown at 26/16 °C, with the major difference between the ecotypes being that the low‐elevation plants had higher A; however, the ecotypes responded differently when grown at cool temperature. At temperatures below the thermal optimum, A in high‐elevation plants grown at 14/7 °C was enhanced relative to plants grown at 26/16 °C, while A in low‐elevation plants grown at 14/7 °C was reduced compared to 26/16 °C‐grown plants. Photoinhibition at low growth temperature was minor in both ecotypes as indicated by small reductions in dark‐adapted Fv/Fm. In both ecotypes, the activity of Rubisco was equivalent to A below 17 °C but well in excess of A above 25 °C. Activities of PEPCase and PPDK responded to temperature in a similar proportion relative to Rubisco, and showed no evidence for dissociation that would cause them to become principal limitations at low temperature. Because of the similar temperature response of Rubisco and A, we propose that Rubisco is a major limitation on C4 photosynthesis in B. gracilis below 17 °C. Based on these results and for theoretical reasons associated with how C4 plants use Rubisco, we further suggest that Rubisco capacity may be a widespread limitation upon C4 photosynthesis at low temperature.  相似文献   

20.
Phenology, irradiance, and temperature characteristics of an edible brown alga, Undaria pinnatifida (Laminariales), were examined from the southernmost natural population in Japan, both by culturing gametophytes and examining the photosynthetic activity of sporophytes using dissolved oxygen sensors and pulse amplitude-modulated chlorophyll fluorometer (IMAGING-PAM). Our surveys confirmed that sporophytes were present between winter and early summer, but absent by July. IMAGING-PAM experiments were used to measure maximum effective quantum yield (ΦII at 0 μmol photons m?2 s?1) for each of 14 temperatures (8–36 °C). Oxygen production was also determined over a coarser temperature gradient. Net photosynthesis and ΦII (at 0 μmol photons m?2 s?1) were observed to be temperature-dependent; the maximum ΦII was estimated to be 0.67, occurred at 21.2 °C, and was nearly identical to the optimal temperature of the net photosynthetic rate (21.7 °C). A net photosynthesis–irradiance (P–E) model revealed that saturation irradiance (E k) was 119.5 μmol photons m?1 s?1, and the compensation irradiance (E c) was 17.4 μmol photons m?1 s?1. Culture experiments on the gametophytes revealed that most individuals could not survive temperatures over 28 °C and that growth rates were severely inhibited. Based on our observations, temperatures greater than 20 °C are likely to influence photosynthetic activity and gametophyte survival, and therefore, it is possible that this species might become locally extinct if seawater temperatures in this region continue to rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号