首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yield of tobacco was related to the amount of infection by Meloidogyne javanica during the first month after transplanting. Six nematicidal treatments significantly reduced infection during this period and subsequently increased yield. However, during the second month after transplanting, infection in plots treated with O-ethyl S,S-dipropyl phosphorodithioate (V-C 9-104) and a mixture of 80% chlorinated C₃ hydrocarbons + 20% methyl isothioeyanate (DD + MENCS) was not significantly different from infection in untreated plots. After 3 months, root-knot indices in plots treated with V-C 9-104, DD + MENCS, O,O-diethyl O-[p-(methylsulfinyl) phenyl] phosphorothioate (B-25141), and 1,3-dichloropropene, 1,2-dichloropropane (DD) were not significantly different from those in untreated plots; reduced infection was present only in plots treated with ethylene dibromide (EDB) and 2-methyl-2 (methylthio) propionaldehyde O-(methylcarbamoyl) oxime (aldicarb). At the end of harvest (4 months after transplanting), root-knot indices in all plots were essentially equal.  相似文献   

2.
Aldicarb or Du Pont 1410 (S-methyl 1-(dimethylcarbamoyl)-N-[(methylcarbamoyl) oxy] thioformimidate) at 2.6–11.2 kg a.i./ha applied to the soil at planting time controlled potato cyst-nematode, Heterodera rostochiensis, in sandy loam, peaty loam and silt loam and greatly increased tuber yields of susceptible potatoes. Nemacur (O-ethyl-O-(3-methyl-4-methylthiophenyl) isopropylamido-phosphate) controlled potato cyst-nematode in sandy loam at 2.9–10.3 kg a.i./ha and in silt loam at 11.2 kg a.i./ha but did not control the nematode well in peaty loam even at 22.4 kg a.i./ha. In peaty loam aldicarb and Nemacur were more effectively incorporated by rotavation than by a modified power harrow.  相似文献   

3.
The efficacy of abamectin as a seed treatment for control of Meloidogyne incognita on cotton was evaluated in greenhouse, microplot, and field trials in 2002 and 2003. Treatments ranging from 0 to 100 g abamectin/100 kg seed were evaluated. In greenhouse tests 35 d after planting (DAP), plants from seed treated with abamectin were taller than plants from nontreated seed, and root galling severity and nematode reproduction were lower where treated seed were used. The number of second stage juveniles that had entered the roots of plants from seed treated with 100 g abamectin/kg seed was lower during the first 14 DAP than with nontreated seed. In microplots tests, seed treatment with abamectin and soil application of aldicarb at 840 g/kg of soil reduced the number of juveniles penetrating seedling roots during the first 14 DAP compared to the nontreated seedlings. In field plots, population densities of M. incognita were lower 14 DAP in plots that received seed treated with abamectin at 100 g/kg seed than where aldicarb (5.6 kg/ha) was applied at planting. Population densities were comparable for all treatments, including the nontreated controls, at both 21 DAP and harvest. Root galling severity did not differ among treatments at harvest.  相似文献   

4.
Soil application of DBCP (l,2-dibromo-3-chloropropane) and foliar applications of oxamyl (methyl N'',N''-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate) were compared for control of Tylenchulus semipenetrans in a grapefruit (Citrus paradisi) orchard, DBCP reduced nematode populations and increased fruit growth rate, fruit size at harvest, and yield compared to the untreated controls in the 2 years following treatments. Foliar applications of oxamyl reduced nematode populations and increased fruit growth rate slightly the first year, but not in the second. Foliar applications of oxamyl did not improve control attained by DBCP alone. Soil application of aldicarb [2-methyl-2-(methylthio)propionaldehyde-O-(methylcarbamoyl)oxime] or DBCP to an orange (C. sinensis) orchard reduced T. semipenetrans populations in the 3 years tested and increased yield in 1 of 3 years. Aldicarb treatment reduced fruit damage caused by the citrus rust mite, Phyllocoptruta oleivora. Aldicarb, applied at 5.7 or 11.4 kg/ha, by disk incorporation or chisel injection, was equally effective in controlling nematodes, improving yields, fruit size, and external quality. In a grapefruit orchard, chisel-applied aldicarb reduced nematode populations and rust mite damage and increased yields in both years and increased fruit size in one year. The 11.4-kg/ha rate was slightly more effective than the 5.7-kg/ha rate. Aldicarb appears to be an adequate substitute for DBCP for nematode control in Texas citrus orchards and well-suited to an overall pest management system for Texas citrus.  相似文献   

5.
Seasonal vertical migration of Meloidogyne chitwoodi through soil and its impact on potato production in Washington and Oregon was studied. Nematode eggs and second-stage juveniles (J2) were placed at various depths (0-180 cm) in tubes filled with soil and buried vertically or in holes dug in potato fields. Tubes were removed at intervals over a 12-month period and soil was bioassayed on tomato roots. Upward migration began in the spring after water had percolated through the tubes. Nematodes were detected in the top 5 cm of tubes within 1-2 months of burial, depending on depth of placement. Potatoes were grown in field plots for 4 or 5 months before the tubers were evaluated for infection. One hundred eggs and J2 per gram soil placed at 60 and 90 cm caused significant tuber damage at the Washington and Oregon sites, respectively. At the Washington site, inoculum placed at 90, 120, and 150 cm caused potato root infection without serious impact on tuber quality, but inoculum diluted 2-8 times and placed at 90 cm did not cause root or tuber infection. Nematode migration was dependent on soil texture; 9 days after placement at the bottoms of tubes, J2 had moved up 55 cm in sandy loam soil (Oregon) but only 15 cm in silt loam (Washington). Thus, the importance of M. chitwoodi which occur deep in a soil profile may depend on soil texture, population density, and length of the growing season.  相似文献   

6.
Aldicarb, or Du Pont 1410 (S-methyl-I-(dimethylcarbamoyl)-N-[(methyl-carbamoyl)oxy]thioformimidate), at 2.8–22.4 kg a.i./ha incorporated in the seed-bed before sowing greatly increased the yield of peas in a clay loam and two sandy clay soils infested with pea cyst-nematode, Heterodera goettingiana, and lessened or prevented increase in the number of nematodes. CibaGeigy 10576 (an organophosphorus compound) at 5.6–22.4 kg a.i./ha was similarly effective in a sandy clay soil. Dowco 275 (O, O-diethylO-(6-fluoro-2 pyridyl) phosphorothioate) at 5.6 or 11.2 kg a.i./ha also controlled the nematode well in the clay loam and in a sandy clay soil but although it greatly increased the yield of peas in the clay loam, it did not increase yield in the sandy clay.  相似文献   

7.
In a series of microcosm experiments with an arable, sandy loam soil amended with sugarbeet leaf, the short-term (8 weeks) dynamics of numbers of nematodes were measured in untreated soil and in γ-irradiated soil inoculated with either a field population of soil microorganisms and nematodes or a mixed population of laboratory-propagated bacterivorous nematode species. Sugarbeet leaf stimulated an increase in bacterivorous Rhabditidae, Cephalobidae, and a lab-cultivated Panagrolaimus sp. Differences were observed between the growth rates of the nematode population in untreated and γ-irradiated soils, which were caused by two nematophagous fungi, Arthrobotrys oligospora and Dactylaria sp. These fungi lowered the increase in nematode numbers due to the organic enrichment in the untreated soil. We estimated the annually produced bacterivous nematodes to consume 50 kg carbon and 10 kg nitrogen per ha, per year, in the upper, plowed 25 cm of arable soil.  相似文献   

8.
The effects of Meloidogyne incognita on the growth and water relations of cotton were evaluated in a 2-year field study. Microplots containing methyl bromide-fumigated fine sandy loam soil were infested with the nematode and planted to cotton (Gossypium hirsutum L.). Treatments included addition of nematodes alone, addition of nematodes plus the insecticide-nematicide aldicarb (1.7 kg/ha), and an untreated control. Meloidogyne incognita population densities reached high levels in both treatments where nematodes were included. Root galling, plant height at harvest, and seed cotton yield were decreased by nematode infection. In older plants (89 days after planting [DAP]), leaf transpiration rates and stomatal conductance were reduced, and leaf temperature was increased by nematode infection. Nematode infection did not affect (P = 0.05) leaf water potential in either young or older plants but lowered the osmotic potential. The maximum rate and cumulative amount of water flowing through intact plants during a 24-hour period were lower, on both a whole-plant and per-unit-leaf-area basis, in infected plants than in control plants. Application of aldicarb moderated some of the nematode effects but did not eliminate them.  相似文献   

9.
Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C).  相似文献   

10.
In sandy clay loam under glass 11.2 kg a.i. Du Pont 1410 alone or with 448 kg Di-Trapex CP/ha, 441 kg dazomet with 448 kg Telone or 448 kg Di-Trapex CP/ha, prevented potato cyst-nematodes, Heterodera pallida, increasing on KNVF tomato rootstocks. In the heated glasshouse where the soil was treated with 441 kg dazomet/ha alone, the nematodes increased in the top 10 cm of soil, whether the soil was sealed with Polythene sheeting or water and whether dazomet was applied as dust or prill (small granules). Methyl bromide at 1276 kg/ha did not control the nematodes in soil 20–30 cm deep in one of the treated plots. Tomatoes grew well after all treatments except Du Pont 1410 which had little, if any, effect on grey sterile fungus (Pyrenochaeta lycopersici). Dazomet with Telone or dazomet with Di-Trapex CP inhibited root damage by the fungus.  相似文献   

11.
Four methods of placement of DBCP (l,2-dibromo-3-chloropropane) and a single method of application of ethoprop (0-ethyl S,S-dipropyl phosphorodithioate) wexe compared in each of two areas for control of nematodes on soybeans. One area was a Marlboro sand infested with Hoplolaimus columbus. The other area was a Fuquay loamy sand infested with Meloidogne incognita. Soybean yields were increased and numbers of H. columbus in the row 0-20 cm deep were decreased similarly by all methods of DBCP application in Marlboro soil. All DBCP treatments increased the average soybean yields and decreased numbers of M. incognita larvae in the row 0-20 cm deep in the Fuquay soil. Average root-knot indices were reduced by all DBCP treatments except with placement 40 cm deep beneath the row. Similarly, placement of all or part of the DBCP 20 cm deep and 13 cm to either side of the row resulted in greater average yields than placement of the DBCP 40 cm deep. Apparently, control of M. incognita is more critical 0-20 cm deep than 20-40 cm deep for increasing soybean yields. DBCP did not control H. columbus as effectively as it did M. incognita. Control of H. columbus and M. incognita was not obtained at 0-20-cm and 20-40-cm depths 30 cm and 45 cm from the row regardless of the method used to apply DBCP. H. columbus and M. incognita were controlled more effectively and soybean yields were higher with DBCP at 13.6 kg a.i./ha than with ethoprop at 4.5 kg a.i./ha.  相似文献   

12.
Damage to cotton by Rotylenchulus reniformis below plow depth was evaluated in a sandy clay loam soil at Weslaco, Texas. In December 1999, 14 holes on 51-cm centers were dug 91 cm deep along the planting bed and adjacent furrow and 2 ml of 1,3-dichloropropene was placed 91, 61, and 30 cm deep as each hole was refilled and packed. This technique eliminated 96%, 81%, and 74% of R. reniformis down to 107 cm at distances 0, 25, and 51 cm laterally from the point of application (P ≤ 0.05), whereas chisel fumigation at 168 liters/ha 43 cm deep reduced nematode numbers only in the top 61 cm (P ≤ 0.001). Manual placement of fumigant increased yield 92%; chisel fumigation increased yield 88% (P ≤ 0.005). A second experiment in February 2001 placed fumigant 43 or 81 cm deep, or at both 43 and 81 cm. Holes alone had no significant effect on nematode density at planting, midseason or harvest, on root length density at midseason, or on cotton lint yield. Fumigant at 43 cm reduced nematode numbers above fumigant application depth at planting 94% (P ≤ 0.02), at midseason 37% (P ≤ 0.09), and at harvest 0%, increasing yield 57% (P ≤ 0.002). Fumigant at 81 cm reduced nematode numbers above fumigant application depth at planting 86% (P ≤ 0.02), at midseason 74% (P ≤ 0.02), and at harvest 48% (P ≤ 0.01), increasing yield 53% (P ≤ 0.002). Fumigating at both 43 and 81 cm reduced nematode numbers above 90 cm 94% at planting and 79% at midseason, increased midseason root-length density 14-fold below 76 cm, and doubled yield (P ≤ 0.02 in all cases).  相似文献   

13.
Excised tomato roots were examined histologically for interactions of the fungus Paecilomyces lilacinus and Meloidogyne incognita race 1. Root galling and giant-cell formation were absent in tomato roots inoculated with nematode eggs infected with P. lilacinus. Few to no galls and no giant-cell formation were found in roots dipped in a spore suspension of P. lilacinus and inoculated with M. incognita. Numerous large galls and giant cells were present in roots inoculated only with M. incognita. P. lilacinus colonized the surface of epidermal cells as well as the internal cells of epidermis and cortex. The possibility of biological protection of plant surfaces with P. lilacinus against root-knot nematodes is discussed.  相似文献   

14.
Baermann funnels were modified to eliminate or reverse the small temperature gradient (1-2 C/cm) across the soil layer that normally results from water evaporation. Effects of modifications on extraction efficiency were examined at various ambient temperatures and after overnight adaptation of three nematode species at 20 and 30 C. Extraction of Meloidogyne incognita from sandy loam, Tylenchulus semipenetrans from sandy clay loam, and Rotylenchulus reniformis from silt was greatly accelerated simply by covering funnels to prevent evaporation. In most cases, covering increased the nematodes extracted by 10-100 times after 5.5-48 hours. Faster and more efficient extraction of R. reniformis occurred over a wide range of ambient temperature (18-29 C). Effects of ambient temperature and temperature gradient direction on Baermann funnel extraction of R. reniformis were partly inconsistent with the behavior of R. reniformis in agar. Nematodes in agar moved toward cold at some ambient temperatures and toward heat at other temperatures. They always appeared to move toward cold on Baermann funnels. Differences were not attributable to blockage of gas exchange by covers. In agar and in funnels, the patterns of response to ambient temperature were shifted in the direction of the storage temperature.  相似文献   

15.
Gradients of salts of the specific ion repellents for Meloidogyne incognita -- NH₄⁺, K⁺, Cl⁻, and NO₃⁻ -- have been demonstrated to shield tomato roots from infestation in soil. The strategy of these greenhouse experiments was to interpose a salt barrier in a soil column between the plant roots and the nematodes. The relative effectiveness of the salts as a barrier to infective second-stage juveniles in a sandy loam was NH₄NO₃, NH₄Cl > KNO₃ > KCl. Some of these ions are beneficial to plant growth, and the results suggest that a new environmentally tolerable means of plant protection is possible.  相似文献   

16.
Isolates of Pasteuria penetrans were evaluated for ecological characteristics that are important in determining their potential as biological control agents. Isolate P-20 survived without loss of its ability to attach to its host nematode in dry, moist, and wet soil and in soil wetted and dried repeatedly for 6 weeks. Some spores moved 6.4 cm (the maximum distance tested) downward in soil within 3 days with percolating water. The isolates varied greatly in their attachment to different nematode species and genera. Of five isolates tested in spore-infested soil, three (P-104, P-122, B-3) attached to two or more nematode species, whereas B-8 attached only to Meloidogyne hapla and B-I did not attach to any of the nematodes tested. In water suspensions, spores of isolate P-20 attached readily to M. arenaria but only a few spores attached to other Meloidogyne spp. Isolate P-104 attached to all Meloidogyne spp. tested but not to Pratylenchus scribneri. Isolate B-4 attached to all species of Meloidogyne and Pratylenchus tested, but the rate of attachment was relatively low. Isolate P-Z00 attached in high numbers to M. arenaria when spores were extracted from females of this nematode; when extracted from M. javanica females, fewer spores attached to M. arenaria than to M. javanica or M. incognita.  相似文献   

17.
Recoverable fenamiphos in the soil and residue in squash following different simulated rainfall treatments after nematicide application were determined in a 2-year study. Efficacy of fenamiphos also was evaluated. Fenamiphos treatments (3 SC and 15 G) were broadcast (6.7 kg a.i./ha) over plots and incorporated into the top 15 cm of soil immediately before planting ''Dixie Hybrid'' squash. Simulated rainfall treatments of 0, 2.5, and 5.0 cm water were applied 1 day after fenamiphos application. Soil samples from 0- to 8-cm, 8- to 15-cm, and 15- to 30-cm soil depths were collected 1 day after the simulated rainfall applications and analyzed for fenamiphos, fenamiphos sulfoxide (FSO), and fenamiphos sulfone (FSO₂). Squash was analyzed for total fenamiphos residue. Greater concentrations of fenamiphos were present in the 0- to 8-cm soil layer following application of 15 G than 3 SC formulation. Simulated rainfall treatments did not alter fenamiphos concentrations in any soil layer (except for the 0- to 8-cm depth in 1992) or concentration of FSO and total fenamiphos residue in the 15- to 30-cm soil layer. Root-gall indices were greater from untreated than most fenamiphos-treated plots, but were not affected by formulations of fenamiphos or simulated rainfall treatments. Concentrations of total residue in squash ranged from 1 to 4 μg FSO₂/g.  相似文献   

18.
The effects of combinations of organic amendments, phytochemicals, and plant-growth promoting rhizobacteria on tomato (Lycopersicon esculentum) germination, transplant growth, and infectivity of Meloidogyne incognita were evaluated. Two phytochemicals (citral and benzaldehyde), three organic amendments (pine bark, chitin, and hemicellulose), and three bacteria (Serratia marcescens, Brevibacterium iodinum, and Pseudomonas fluorescens) were assessed. Increasing rates of benzaldehyde and citral reduced nematode egg viability in vitro. Benzaldehyde was 100% efficacious as a nematicide against juveniles, whereas citral reduced juvenile viability to less than 20% at all rates tested. Benzaldehyde increased tomato seed germination and root weight, whereas citral decreased both. High rates of pine bark or chitin reduced plant growth but not seed germination, whereas low rates of chitin increased shoot length, shoot weight, and root weight; improved root condition; and reduced galling. The combination of chitin and benzaldehyde significantly improved tomato transplant growth and reduced galling. While each of the bacterial isolates contributed to increased plant growth in combination treatments, only Brevibacterium iodinum applied alone significantly improved plant growth.  相似文献   

19.
The effects of preplanted marigold on tomato root galling and multiplication of Meloidogyne incognita, M. javanica, M. arenaria, and M. hapla were studied. Marigold cultivars of Tagetes patula, T. erecta, T. signata, and a Tagetes hybrid all reduced galling and numbers of second-stage juveniles in subsequent tomato compared to the tomato-tomato control. All four Meloidogyne spp. reproduced on T. signata ''Tangerine Gem''. Several cultivars of T. patula and T. erecta suppressed galling and reproduction of Meloidogyne spp. on tomato to levels lower than or comparable to a fallow control. Phytotoxic effects of marigold on tomato were not observed. Several of the tested marigold cultivars are ready for full-scale field evaluation against Meloidogyne spp.  相似文献   

20.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号