首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Variation of reproductive success, an important determinant of the opportunity for sexual selection, is an outcome of competition within one sex for mating with members of the other sex. In promiscuous species, males typically compete for access to females, and their reproductive strategies are strongly related to the spatial distribution of females. I used 10 microsatellite loci and the mtDNA control region to determine seasonal differences in the reproductive success of males and females of the common vole (Microtus arvalis), one of the most numerous mammals in Europe. The sex-related spatial structure and bias in dispersal between genders were also assessed. Standardized variance of the reproductive success of females did not vary seasonally due to the continuity of female philopatry throughout the breeding season and to the constancy of the number of females reproducing successfully in each season. The males are the dispersing sex, undergoing both natal and breeding dispersal. Their standardized variance of reproductive success was significantly higher than that for females in July, when only two males monopolized 80% of the females in the population and when variance of male reproductive success was highest (Im = 7.70). The seasonally varying and high standardized variance of male reproductive success may be explained by male-male competition for matings, coupled with seasonal changes in the age structure of the population.  相似文献   

3.
Female greater horseshoe bats form maternity colonies each summer in order to give birth and raise young. During the mating period, females visit males occupying territorial sites, copulation takes place and sperm are stored until ovulation occurs, normally in April. Using microsatellite markers and a likelihood method of parentage analysis, we studied breeding behaviour and male reproductive success over a five-year period in a population of bats in south-west Britain. Paternity was assigned with 80% confidence to 44% of young born in five successive cohorts. While a small annual skew in male reproductive success was detected, the variance increased over five years due to the repeated success of a few individuals. Mating was polygynous, although some females gave birth to offspring sired by the same male in separate years. Such repeated partnerships probably result from fidelity for either mating sites or individuals or from sperm competition. Females mated with males born both within and outside their own natal colony; however, relatedness between parents was no less than the average recorded for male female pairs. Gene flow between colonies is likely to be primarily mediated by both female and male dispersal during the mating period rather than more permanent movements.  相似文献   

4.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

5.
Between-individual variance in potential reproductive rate theoretically creates a load in reproducing populations by driving sexual selection of male traits for winning competitions, and female traits for resisting the costs of multiple mating. Here, using replicated experimental evolution under divergent operational sex ratios (OSR, 9:1 or 1:6 ♀:♂) we empirically identified the parallel reproductive fitness consequences for females and males in the promiscuous flour beetle Tribolium castaneum. Our results revealed clear evidence that sexual conflict resides within the T. castaneum mating system. After 20 generations of selection, females from female-biased OSRs became vulnerable to multiple mating, and showed a steep decrease in reproductive fitness with an increasing number of control males. In contrast, females from male-biased OSRs showed no change in reproductive fitness, irrespective of male numbers. The divergence in reproductive output was not explained by variation in female mortality. Parallel assays revealed that males also responded to experimental evolution: individuals from male-biased OSRs obtained 27% greater reproductive success across 7-day competition for females with a control male rival, compared to males from the female-biased lines. Subsequent assays suggest that these differences were not due to postcopulatory sperm competitiveness, but to precopulatory/copulatory competitive male mating behavior.  相似文献   

6.
In mammals, species with highly male-biased sexual size dimorphismtend to have high variance in male reproductive success. However,little information is available on patterns of sexual selection,variation in male and female reproductive success, and bodysize and mating success in species with female-biased size dimorphism.We used parentage data from microsatellite DNA loci to examinethese issues in the yellow-pine chipmunk (Tamias amoenus), asmall ground squirrel with female-biased sexual size dimorphism.Chipmunks were monitored over 3 years in the Kananaskis Valley,Alberta, Canada. We found evidence of high levels of multiplepaternity within litters. Variation in male and female reproductivesuccess was equal, and the opportunity for sexual selectionwas only marginally higher in males than females. Male and femalereproductive success both depended on mating success. We foundno evidence that the number of genetic mates a male had dependedon body size. Our results are consistent with a promiscuousmating system in which males and female mate with multiple partners.Low variation in male reproductive success may be a generalfeature of mammalian species in which females are larger thanmales.  相似文献   

7.
Discriminating female mate preferences enhance the variance in reproductive success among males of a population and create a potential for sexual selection, which can account for trait evolution and diversification. Fish color patterns are among the prime targets of mate choice-driven sexual selection. Populations of the cichlid Tropheus from Lake Tanganyika display remarkable geographic color pattern variation, but the role of female choice in their rapid and rich phenotypic diversification is unclear. Males and females establish a pair bond prior to spawning monogamously, but as brood care is strictly maternal, female investment in reproduction is high and the operational sex ratio is male-biased. Therefore, variance in male reproductive success can accrue if individual males succeed repeatedly in securing a mate. To test this prediction in the red colored Tropheus moorii “Chimba”, four pairs of males were presented to a series of females and female mate preferences were inferred from pairwise interactions. There was a significant difference in mating success between the males of each pair (P < 0.001 over all trials), as—with one exception—females shared preferences for the same males. Male courtship activity was strongly correlated with female choice. Our experiment suggests that female choice contributes to the variance in male reproductive success in the tested population.  相似文献   

8.
Lifetime mating success of male azure damselflies (Coenagrion puella) was measured in a natural population. The major determinant of mating success is the number of days a male spends at the breeding site, which is mostly determined by a male's adult lifespan. Long-lived males have a higher mating rate than short-lived males, and daily mating rate increases with age up to 6 days, then falls. Large males live longer, but have a lower daily mating rate than small males. These effects of size are very weak, accounting for no more than 2% of the daily variance in mating success. The only overall effect of size on lifetime mating success is that males at both extremes of the size distribution are more likely to fail to mate. Chance differences in the number of females encountered are sufficient to account for the remaining variance in mating success. The weather is also shown to have a major effect on mating success. We draw attention to the ways in which it may be misleading to draw conclusions about the action of sexual selection from studies of daily, rather than lifetime, reproductive success. We provide evidence to support the view that variance in male reproductive success is neither evidence for sexual selection, nor a measure of its intensity.  相似文献   

9.
Parentage analyses of baleen whales are rare, and although mating systems have been hypothesized for some species, little data on realized male reproductive success are available and the patterns of male reproductive success have remained elusive for most species. Here we combine over 20 years of photo-identification data with high-resolution genetic data for the majority of individual North Atlantic right whales to assess paternity in this endangered species. There was significant skew in male reproductive success compared to what would be expected if mating was random (P < 0.001). The difference was due to an excess of males assigned zero paternities, a deficiency of males assigned one paternity, and an excess of males assigned as fathers for multiple calves. The variance in male reproductive success was high relative to other aquatically mating marine mammals, but was low relative to mammals where the mating system is based on resource- and/or mate-defence polygyny. These results are consistent with previous data suggesting that the right whale mating system represents one of the most intense examples of sperm competition in mammals, but that sperm competition on its own does not allow for the same degree of polygyny as systems where males can control access to resources and/or mates. The age distribution of assigned fathers was significantly biased towards older males (P < 0.05), with males not obtaining their first paternity until approximately 15 years of age, which is almost twice the average age of first fertilization in females (8 years), suggesting that mate competition is preventing younger males from reproducing. The uneven distribution of paternities results in a lower effective population size in this species that already has one of the lowest reported levels of genetic diversity, which may further inhibit reproductive success through mate incompatibility of genetically similar individuals.  相似文献   

10.
Many bird species demonstrate a variable mating system, with some males being monogamously mated and other males able to attract more than one mate. This variation in avian mating systems is often explained in terms of potential costs of sharing breeding partners and compensation for such costs. However, whenever there is a difference in the optimal mating system for males and females, a sexual conflict over the number of partners is expected. This paper contains a verbal model of how a conflict between male and female European starlings (Sturnus vulgaris),resulting from the fitness consequences of different mating systems for males and females differing over time, determines the mating system. We demonstrate that males and females have contrasting fitness interests regarding mating system, such that males gain from attracting additional mates whereas already mated females pay a cost in terms of reduced reproductive success if males are successful in attracting more mates. We demonstrate how this can be traced to the rules by which males allocate non-sharable care between different broods. Furthermore, we demonstrate that there exist male and female conflict behaviours with the potential to affect the mating system. For example, aggression from already mated females towards prospecting females can limit male mating success and males can circumvent this by spacing the nest-sites they defend. The realised mating system will emerge as a consequence of both the fitness value of the different mating systems for males and females, and the costs for males and females of intersexual competition. We discuss how this model can be developed and critically evaluated in the future.  相似文献   

11.
Synopsis This study investigates the role of male mating status in female choice patterns in the carmine triplefin, Axoclinus carminalis, a tripterygiid fish that exhibits paternal care. The distribution of daily reproductive activity is clumped, with many males receiving no mates and some receiving three or more. Females in this species do not prefer larger males, and characteristics of the oviposition site appear to have minimal effects on male mating success. When a female is removed from a male early in the daily spawning period, that male attracts fewer additional females for the remainder of the spawning period than does a control male. These changes in mating success are temporary, and do not affect mating success on subsequent days. A preference for mating males or males that are guarding eggs could provide asymmetric benefits for males to defend oviposition sites. This preference for males with eggs could be acting alone or with other factors such as high variance in oviposition site quality to favor the evolution of paternal care in fishes.  相似文献   

12.
Why mainly males compete and females take a larger share in parental care remains an exciting question in evolutionary biology. Role‐reversed species are of particular interest, because such ‘exceptions’ help to test the rule. Using mating systems theory as a framework, we compared the reproductive ecology of the two most contrasting coucals with regard to sexual dimorphism and parental care: the black coucal with male‐only care and the biparental white‐browed coucal. Both species occur in the same lush habitat and face similar ecological conditions, but drastically differ in mating system and sexual dimorphism. Black coucals were migratory and occurred at high breeding densities. With females being obligatory polyandrous and almost twice as heavy as males, black coucals belong to the most extreme vertebrates with reversed sexual dimorphism. Higher variance in reproductive success in fiercely competing females suggests that sexual selection is stronger in females than in males. In contrast, resident white‐browed coucals bred at low densities and invariably in pairs. They were almost monomorphic and the variance in reproductive success was similar between the sexes. Black coucals were more likely to lose nests than white‐browed coucals, probably facilitating female emancipation of parental care in black coucals. We propose that a combination of high food abundance, high population density, high degree of nest loss and male bias in the adult sex ratio represent ecological conditions that facilitate role reversal and polyandry in coucals and terrestrial vertebrates in general.  相似文献   

13.
Reproductive strategies of rhesus macaques   总被引:4,自引:0,他引:4  
Reproductive strategies incorporate a multitude of mechanisms that have evolved to promote the reproductive success of individuals. Evolutionary perspectives tend to emphasize the advantages of male-male competition and female choice as mediators of differential reproduction. Male rhesus macaques have not been observed to fight for access to sexually receptive females, although they suffer more wounds during the mating season. An increased likelihood of attacks appears to coincide with male troop entry. Males who spend more time in consort and mate with more females tend to sire more offspring. Genetic analysis of paternity has pinpointed age and endurance rivalry, rather than agonistic competition, as key variables associated with variation in progeny production. Female rhesus macaques often copulate with multiple males during their ovulatory period, and tend to conceive on the first cycle of the mating season. Female reproductive success is more likely to be a function of offspring survivorship than the identity of particular male partners. The role of female choice as a direct mediator of male reproductive success is unresolved, but female mate selection seems to indirectly affect male reproductive success because female preference for mating with novel males seems to foster male dispersal. Evaluating whether mating preferences for particular male phenotypes affectsfemale reproductive success is a task for the future. A common denominator to the reproductive strategies of both female and male rhesus macaques is that feeding patterns affect body condition which influences reproductive output and regulates relative reproductive success.  相似文献   

14.
Previous studies have predicted that the availability over time of females in oestrus influences the variance of male reproductive success in a given year. When females are spatially aggregated, they represent a potentially defendable resource for each male when oestrus is asynchronous, and the most competitive males are expected to gain priority of access to receptive females. When females breed synchronously, a single male, even when highly competitive, is not able to prevent them from mating with other males. This hypothesis was tested in a large multimale-multifemale group of domestic cats, Felis catus, which was monitored for three years. The results support the prediction that the variance in male reproductive success was four times greater in years when females bred asynchronously, and dominant males sired the highest proportion of offspring. We conclude that the temporal availability of mates plays a role in the adoption of reproductive tactics in the domestic cat.  相似文献   

15.
Sexual selection is potentially stronger than natural selection when the variance in male reproductive fitness exceeds all other components of fitness variance combined. However, measuring the variance in male reproductive fitness is difficult when nonmating males are absent, inconspicuous, or otherwise difficult to find. Omitting the nonmating males inflates estimates of average male reproductive success and diminishes the variance, leading to underestimates of the potential strength of sexual selection. We show that, in theory, the proportion of the total variance in male fitness owing to sexual selection is approximately equal to H, the mean harem size, as long as H is large and females are randomly distributed across mating males (i.e., Vharem=H). In this case, mean harem size not only provides an easy way to estimate the potential strength of sexual selection but also equals the opportunity for sexual selection, I(mates). In nature, however, females may be overdispersed with VharemH. We show that H+(k-1) is a good measure of the opportunity for sexual selection, where k is the ratio Vharem/H. A review of mating system data reveals that in nature the median ratio for Vharem/H is 1.04, but as H increases, females tend to become more aggregated across mating males with V(harem) two to three times larger than H.  相似文献   

16.
Considerable controversy exists concerning possible effects of sexually selected phenotypes via intermale competition on reproductive success. The mandrill ( Mandrillus sphinx ) is an extreme example of evolution by sexual selection, and hence we have studied a semi-free-ranging colony of mandrills in Gabon to gather information on male rank, mating success and paternity, as determined by DNA fingerprinting. Two morphological variants or adult male were identified; 'fatted' males, with maximum secondary sexual coloration, which occupied dominant positions in the social group, and 'non-fatted' males, with muted secondary sexual adornments, smaller testes and lower plasma testosterone levels, which lived as peripheral/solitary individuals. DNA fingerprinting analyses on infants born over five successive years showed that only the two most dominant, fatted males in the group had fathered off spring. Throughout the annual mating season these males attempted to mate-guard and copulate with females during periods of maximal sexual skin tumescence. Male rank and mating success were strongly positively related and the alpha male sired 80–100% of the resulting offspring during three consecutive years. Non-fatted adult males and group associated subadult males engaged in infrequent, opportunistic matings and did not guard females. Loss of alpha status resulted in a fall in reproductive success, but the effect was gradual; the deposed alpha male continued to father 67% and 25% of infants born during the next two years. Thus these results of behavioural and genetic studies on mandrills demonstrate unequivocally that clear-cut relationships exist between male secondary sexual development, social dominance, copulatory behaviour and reproductive success in the social group.  相似文献   

17.
Many studies investigate the benefits of polyandry, but repeated interactions with males can lower female reproductive success. Interacting with males might even decrease offspring performance if it reduces a female's ability to transfer maternal resources. Male presence can be detrimental for females in two ways: by forcing females to mate at a higher rate and through costs associated with resisting male mating attempts. Teasing apart the relative costs of elevated mating rates from those of greater male harassment is critical to understand the evolution of mating strategies. Furthermore, it is important to test whether a male's phenotype, notably body size, has differential effects on female reproductive success versus the performance of offspring, and whether this is due to male body size affecting the costs of harassment or the actual mating rate. In the eastern mosquitofish Gambusia holbrooki, males vary greatly in body size and continually attempt to inseminate females. We experimentally manipulated male presence (i.e., harassment), male body size and whether males could copulate. Exposure to males had strong detrimental effects on female reproductive output, growth and immune response, independent of male size or whether males could copulate. In contrast, there was a little evidence of a cross‐generational effect of male harassment or mating rate on offspring performance. Our results suggest that females housed with males pay direct costs due to reduced condition and offspring production and that these costs are not a consequence of increased mating rates. Furthermore, exposure to males does not affect offspring reproductive traits.  相似文献   

18.

Background  

Exaggerated male ornaments and displays often evolve in species where males only provide females with ejaculates during reproduction. Although "good genes" arguments are typically invoked to explain this phenomenon, a simpler alternative is possible if variation in male reproductive quality (e.g. sperm number, ejaculate content, mating rate) is an important determinant of female reproductive success. The "phenotype-linked fertility hypothesis" states that female preference for male ornaments or displays has been selected to ensure higher levels of fertility and has driven the evolution of exaggerated male traits. Females of the stalk-eyed fly Teleopsis dalmanni must mate frequently to maintain high levels of fertility and prefer to mate with males exhibiting large eyespan, a condition-dependent sexual ornament. If eyespan indicates male reproductive quality, females could directly increase their reproductive success by mating with males with large eyespan. Here we investigate whether male eyespan indicates accessory gland and testis length, and then ask whether mating with large eyespan males affects female fertility.  相似文献   

19.
Females in lek-breeding species appear to copulate with a small subset of the available males. Such strong directional selection is predicted to decrease additive genetic variance in the preferred male traits, yet females continue to mate selectively, thus generating the lek paradox. In a study of buff-breasted sandpipers (Tryngites subruficollis), we combine detailed behavioral observations with paternity analyses using single-locus minisatellite DNA probes to provide the first evidence from a lek-breeding species that the variance in male reproductive success is much lower than expected. In 17 and 30 broods sampled in two consecutive years, a minimum of 20 and 39 males, respectively, sired offspring. This low variance in male reproductive success resulted from effective use of alternative reproductive tactics by males, females mating with solitary males off leks, and multiple mating by females. Thus, the results of this study suggests that sexual selection through female choice is weak in buff-breasted sandpipers. The behavior of other lek-breeding birds is sufficiently similar to that of buff-breasted sandpipers that paternity studies of those species should be conducted to determine whether leks generally are less paradoxical than they appear.  相似文献   

20.
The outcome of sexual conflict can depend on the social environment, as males respond to changes in the inclusive fitness payoffs of harmfulness and harm females less when they compete with familiar relatives. Theoretical models also predict that if limited male dispersal predictably enhances local relatedness while maintaining global competition, kin selection can produce evolutionary divergences in male harmfulness among populations. Experimental tests of these predictions, however, are rare. We assessed rates of dispersal in female and male seed beetles Callosobruchus maculatus, a model species for studies of sexual conflict, in an experimental setting. Females dispersed significantly more often than males, but dispersing males travelled just as far as dispersing females. Next, we used experimental evolution to test whether limiting dispersal allowed the action of kin selection to affect divergence in male harmfulness and female resistance. Populations of C. maculatus were evolved for 20 and 25 generations under one of three dispersal regimens: completely free dispersal, limited dispersal and no dispersal. There was no divergence among treatments in female reproductive tract scarring, ejaculate size, mating behaviour, fitness of experimental females mated to stock males or fitness of stock females mated to experimental males. We suggest that this is likely due to insufficient strength of kin selection rather than a lack of genetic variation or time for selection. Limited dispersal alone is therefore not sufficient for kin selection to reduce male harmfulness in this species, consistent with general predictions that limited dispersal will only allow kin selection if local relatedness is independent of the intensity of competition among kin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号