首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Strength training and determinants of VO2max in older men   总被引:2,自引:0,他引:2  
The effects of strength training on maximal aerobic power (VO2max) and some of its determinants were studied in 12 healthy older men (60-72 yr). They underwent 12 wk of strength conditioning of extensors and flexors of each knee with eight repetitions per set, three sets per session, and three sessions per week at 80% of the one repetition maximum (1 RM). Left knee extensors showed a 107% increase in 1 RM, a 10% increase in isokinetic strength at 60 degrees/s, and a 23% increase in total work performed during 25 contractions on an isokinetic dynamometer. Strength measurements of the untrained left elbow extensors showed no change. Leg cycle ergometer VO2max per unit fat-free mass increased by an average 1.9 ml (P = 0.034) whereas arm cycle VO2max was unchanged. Pulmonary function, hemoglobin concentration, erythrocyte volume, plasma volume, and total blood volume did not change. Biopsies of the vastus lateralis showed a 28% increase in mean fiber area, no change in fiber type distribution, a 15% increase in capillaries per fiber, and a 38% increase in citrate synthase activity. The data suggest that the small increase in leg cycle VO2max in older men may be due to adaptations in oxidative capacity and increased mass of the strength-trained muscles.  相似文献   

2.
The purpose of this study was to compare the strength and neuromuscular adaptations for dynamic constant external resistance (DCER) training and dynamic accentuated external resistance (DAER) training (resistance training employing an accentuated load during eccentric actions). Male subjects active in resistance training were assigned to either a DCER training group (n = 10) or a DAER training group (n = 8) for 9 weeks. Subjects in the DCER group performed 4 sets of 10 repetitions with a load of 75% concentric 1 repetition maximum (RM). Subjects in the DAER group performed 3 sets of 10 repetitions with a concentric load of 75% of 1RM and an eccentric load of approximately 120% of concentric 1RM. Three measures reflecting adaptation of elbow flexors and extensors were recorded pretraining and posttraining: concentric 1RM, muscle cross-sectional area (CSA), and specific tension. Strength was assessed at midtraining periods. No significant changes in muscle CSA were observed in either group. Both training groups experienced significant increases in concentric 1RM and specific tension of both the elbow flexors and extensors, but compared with DCER training, DAER training produced significantly greater increases in concentric 1RM of the elbow extensors. These results suggest that, for some exercises, DAER training may be more effective than DCER training in developing strength within a 9-week training phase. However, for trained subjects, neither protocol is effective in eliciting muscle hypertrophy.  相似文献   

3.
Although the negative effects of bed rest on muscle strength and muscle mass are well established, it still remains a challenge to identify effective methods to restore physical capacity of elderly patients recovering from hospitalization. The present study compared different training regimes with respect to muscle strength, muscle fiber size, muscle architecture, and stair walking power in elderly postoperative patients. Thirty-six patients (60-86 yr) scheduled for unilateral hip replacement surgery due to hip osteoarthritis were randomized to either 1) resistance training (RT: 3/wk x 12 wk), 2) electrical stimulation (ES: 1 h/day x 12 wk), or 3) standard rehabilitation (SR: 1 h/day x 12 wk). All measurements were performed at baseline, at 5 wk and 12 wk postsurgery. After 12 wk of resistance training, maximal dynamic muscle strength increased by 30% at 60 degrees /s (P < 0.05) and by 29% at 180 degrees /s (P < 0.05); muscle fiber area increased for type I (+17%, P < 0.05), type IIa (+37%, P < 0.05), and type IIx muscle fibers (+51%, P < 0.05); and muscle fiber pennation angle increased by 22% and muscle thickness increased by 15% (P < 0.05). Furthermore, stair walking power increased by 35% (P < 0.05) and was related to the increase in type II fiber area (r = 0.729, P < 0.05). In contrast, there was no increase in any measurement outcomes with electrical stimulation and standard rehabilitation. The present study is the first to demonstrate the effectiveness of resistance training to induce beneficial qualitative changes in muscle fiber morphology and muscle architecture in elderly postoperative patients. In contrast, rehabilitation regimes based on functional exercises and neuromuscular electrical stimulation had no effect. The present data emphasize the importance of resistance training in future rehabilitation programs for elderly individuals.  相似文献   

4.
A group of 12 sedentary medical students (1 man and 11 women aged 21-27 years) participated in a strength training programme for the trunk muscles lasting 18 weeks. The maximal isometric flexion and extension forces of the trunk muscles were measured before the training and at 18 weeks by dynamometer. The cross-sectional area of the back muscles, i.e. erector spinae, multifidus and psoas muscles, was measured from magnetic resonance images (spin echo sequence TR/TE 1500/80, slice thickness 10 mm) obtained at the L4-L5 disc level before the training, at 11 and 18 weeks. During training, no significant change in the body mass or body fat content was found. Muscle forces or muscle cross-sectional area were not related to body mass. There was a significant increase in both trunk muscle cross-sectional area (psoas muscle P < 0.001 and back muscles P < 0.01) and trunk muscle forces (flexion and extension forces P < 0.01) during the training but no direct association between the muscle cross-sectional area and strength of the flexors and extensors was detected before or after the training.  相似文献   

5.
Effects of strength training (ST) for 21 wk were examined in 10 older women (64 +/- 3 yr). Electromyogram, maximal isometric force, one-repetition maximum strength, and rate of force development of the leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF) and of vastus lateralis (VL), medialis (VM), intermedius (VI) and rectus femoris (RF) throughout the lengths of 3/12--12/15 (Lf) of the femur, muscle fiber proportion and areas of types I, IIa, and IIb of the VL were evaluated. Serum hormone concentrations of testosterone, growth hormone (GH), cortisol, and IGF-I were analyzed for the resting, preexercise, and postexercise conditions. After the 21-wk ST, maximal force increased by 37% (P < 0.001) and 1-RM by 29% (P < 0.001), accompanied by an increase (P < 0.01) in rate of force development. The integrated electromyograms of the vastus muscles increased (P < 0.05). The CSA of the total QF increased (P < 0.05) throughout the length of the femur by 5--9%. The increases were significant (P < 0.05) at 7/15--12/15 Lf for VL and at 3/15--8/15 Lf for VM, at 5/15--9/15 for VI and at 9/15 (P < 0.05) for RF. The fiber areas of type I (P < 0.05), IIa (P < 0.001), and IIb (P < 0.001) increased by 22--36%. No changes occurred during ST in serum basal concentrations of the hormones examined, but the level of testosterone correlated with the changes in the CSA of the QF (r = 0.64, P < 0.05). An acute increase of GH (P < 0.05), remaining elevated up to 30 min (P < 0.05) postloading, was observed only at posttraining. Both neural adaptations and the capacity of skeletal muscle to undergo training-induced hypertrophy even in older women explain the strength gains. The increases in the CSA of the QF occurred throughout its length but differed selectively between the individual muscles. The serum concentrations of hormones remained unaltered, but a low level of testosterone may be a limiting factor in training-induced muscle hypertrophy. The magnitude and time duration of the acute GH response may be important physiological indicators of anabolic adaptations during strength training even in older women.  相似文献   

6.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We investigated the effect of low-intensity resistance exercise training on muscular size and strength where the interset rest period was shortened so as to reduce the metabolite clearance. Female subjects (aged 45.4 +/- 9.5 years, n = 10) performed bilateral knee extension exercises in a seated position on an isotonic leg extension machine. The exercise sessions consisted of 3 sets of exercise at a mean intensity of approximately 50% 1RM with an interset rest period of 30 seconds and was performed twice a week for a period of 12 weeks. The strength and the cross-sectional area (CSA) of the knee extensors and flexors were examined with an isokinetic dynamometer and magnetic resonance imaging (MRI), respectively. The CSAs of the knee extensors and flexors increased by 7.1 +/- 1.6% (p < 0.01, Wilcoxon signed rank test) and 2.5 +/- 1.4% (not significant), respectively. Isometric and isokinetic strengths increased significantly (p < 0.01) at all velocities examined, whereas no significant change was observed in those of knee flexors. These results indicate that a low-intensity resistance exercise with a short interset rest period is substantially effective in inducing muscular hypertrophy and concomitant increase in strength.  相似文献   

8.
We hypothesized that resistance training with combined eccentric and concentric actions, and concentric action only, should yield similar changes in muscular strength. Subjects in a free weight group trained three times a week for 12 wk with eccentric and concentric actions (FW, n = 16), a second group trained with concentric-only contractions using hydraulic resistance (HY; n = 12), and a control group did not train (n = 11). Training for FW and HY included five sets of supine bench press and upright squat at an intensity of 1-6 repetition maximum (RM) plus five supplementary exercises at 5-10 RM for a total of 20 sets per session for approximately 50 min. Testing at pre-, mid-, and posttraining included 1) 1 RM bench press and squat with and 2) without prestretch using free weights; 3)isokinetic peak force and power for bench press and squat at 5 degrees/s, and isotonic peak velocity and power for bench press with 20-kg load and squat with 70-kg load; 4) hydraulic peak bench press force and power, and peak knee extension torque and power at fast and slow speeds; and 5) surface anthropometry (fatfolds and girths to estimate upper arm and thigh volume and muscle area). Changes in overall fatness, muscularity, and muscle + bone cross-sectional area of the limbs did not differ between groups (P greater than 0.05). Improvements in free weight bench press and squat were similar (P greater than 0.05) in FW (approximately 24%) and HY (approximately 22%, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The purpose of this investigation was to compare partial range-of-motion vs. full range-of-motion upper-body resistance training on strength and muscle thickness (MT) in young men. Volunteers were randomly assigned to 3 groups: (a) full range of motion (FULL; n = 15), (b) partial range of motion (PART; n = 15), or (c) control (CON; n = 10). The subjects trained 2 d · wk(-1) for 10 weeks in a periodized program. Primary outcome measures included elbow flexion maximal strength measured by 1 repetition maximum (1RM) and elbow flexors MT measured by ultrasound. The results indicated that elbow flexion 1RM significantly increased (p < 0.05) for the FULL (25.7 ± 9.6%) and PART groups (16.0 ± 6.7%) but not for the CON group (1.7 ± 5.5%). Also, FULL 1RM strength was significantly greater than the PART 1RM after the training period. Average elbow flexor MT significantly increased for both training groups (9.65 ± 4.4% for FULL and 7.83 ± 4.9 for PART). These data suggest that muscle strength and MT can be improved with both FULL and PART resistance training, but FULL may lead to greater strength gains.  相似文献   

10.
Skeletal muscle responses to lower limb suspension in humans.   总被引:8,自引:0,他引:8  
Eight subjects participated in a 6-wk unilateral lower limb suspension (ULLS) study to determine the influence of reduced weight bearing on human skeletal muscle morphology. The right shoe was outfitted with a platform sole that prevented the left foot from bearing weight while walking with crutches, yet it allowed freedom of movement about the ankle, knee, and hip. Magnetic resonance images pre- and post-ULLS showed that thigh muscle cross-sectional area (CSA) decreased (P less than 0.05) 12% in the suspended left lower limb, whereas right thigh muscle CSA did not change. Likewise, magnetic resonance images collected post-ULLS showed that muscle CSA was 14% smaller (P less than 0.05) in the left than in the right leg. The decrease in muscle CSA of the thigh was due to a twofold greater response of the knee extensors (-16%, P less than 0.05) than knee flexors (-7%, P less than 0.05). The rectus femoris muscle of the knee extensors showed no change in CSA, whereas the three vastus muscles showed similar decreases of approximately 16% (P less than 0.05). The apparent atrophy in the leg was due mainly to reductions in CSA of the soleus (-17%) and gastrocnemius muscles (-26%). Biopsies of the left vastus lateralis pre- and post-ULLS showed a 14% decrease (P less than 0.05) in average fiber CSA. The decrease was evident in both type I (-12%) and II (-15%) fibers. The number of capillaries surrounding the different fiber types was unchanged after ULLS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Evidence suggests that consumption of over-the-counter cyclooxygenase (COX) inhibitors may interfere with the positive effects that resistance exercise training has on reversing sarcopenia in older adults. This study examined the influence of acetaminophen or ibuprofen consumption on muscle mass and strength during 12 wk of knee extensor progressive resistance exercise training in older adults. Thirty-six individuals were randomly assigned to one of three groups and consumed the COX-inhibiting drugs in double-blind placebo-controlled fashion: placebo (67 ± 2 yr; n = 12), acetaminophen (64 ± 1 yr; n = 11; 4 g/day), and ibuprofen (64 ± 1 yr; n = 13; 1.2 g/day). Compliance with the resistance training program (100%) and drug consumption (via digital video observation, 94%), and resistance training intensity were similar (P > 0.05) for all three groups. Drug consumption unexpectedly increased muscle volume (acetaminophen: 109 ± 14 cm(3), 12.5%; ibuprofen: 84 ± 10 cm(3), 10.9%) and muscle strength (acetaminophen: 19 ± 2 kg; ibuprofen: 19 ± 2 kg) to a greater extent (P < 0.05) than placebo (muscle volume: 69 ± 12 cm(3), 8.6%; muscle strength: 15 ± 2 kg), when controlling for initial muscle size and strength. Follow-up analysis of muscle biopsies taken from the vastus lateralis before and after training showed muscle protein content, muscle water content, and myosin heavy chain distribution were not influenced (P > 0.05) by drug consumption. Similarly, muscle content of the two known enzymes potentially targeted by the drugs, COX-1 and -2, was not influenced (P > 0.05) by drug consumption, although resistance training did result in a drug-independent increase in COX-1 (32 ± 8%; P < 0.05). Drug consumption did not influence the size of the nonresistance-trained hamstring muscles (P > 0.05). Over-the-counter doses of acetaminophen or ibuprofen, when consumed in combination with resistance training, do not inhibit and appear to enhance muscle hypertrophy and strength gains in older adults. The present findings coupled with previous short-term exercise studies provide convincing evidence that the COX pathway(s) are involved in the regulation of muscle protein turnover and muscle mass in humans.  相似文献   

12.
The force in maximal voluntary isometric contraction of elbow flexors, knee extensors, trunk flexors, and trunk extensors was measured in a representative sample of Danish school children 16-19 years of age (128 boys and 165 girls). The 16 year old boys were 177.8 cm in height, with a mean increase of 1.4 cm per year up to 19 years, and they weighed 66.0 kg, with a mean increase of 1.8 kg per year up to age 19. The girls were 168.0 cm in height with no increase up to age 19, and their mean weight was 59.6 kg, which increased by 1.8 kg per year up to age 19 (p greater than 0.05). The strength in the four muscle groups for boys a girls respectively was 281 N and 182 N for elbow flexors, 574 N and 419 N for knee extensors, 601 N and 404 N for trunk flexors and 664 N and 499 N for trunk extensors. An increase in strength in the elbow and trunk flexors and a decrease in strength in the trunk extensors in relation to values obtained in 1956 was seen, and a difference in strength per kg lean body mass between the boys and the girls was also observed. The estimated strength per unit cross-sectional area of muscle was 38 N X cm-2 in both boys and girls.  相似文献   

13.
This study assessed ultrastructural muscle damage in young (20-30 yr old) vs. older (65-75 yr old) men after heavy-resistance strength training (HRST). Seven young and eight older subjects completed 9 wk of unilateral leg extension HRST. Five sets of 5-20 repetitions were performed 3 days/wk with variable resistance designed to subject the muscle to near-maximal loads during every repetition. Biopsies were taken from the vastus lateralis of both legs, and muscle damage was quantified via electron microscopy. Training resulted in a 27% strength increase in both groups (P < 0.05). In biopsies before training in the trained leg and in all biopsies from untrained leg, 0-3% of muscle fibers exhibited muscle damage in both groups (P = not significant). After HRST, 7 and 6% of fibers in the trained leg exhibited damage in the young and older men, respectively (P < 0.05, no significant group differences). Myofibrillar damage was primarily focal, confined to one to two sarcomeres. Young and older men appear to exhibit similar levels of muscle damage at baseline and after chronic HRST.  相似文献   

14.
To determine possible age differences in muscle damage response to strength training, ultrastructural muscle damage was assessed in seven 20- to 30-yr-old and six 65- to 75-yr-old previously sedentary women after heavy-resistance strength training (HRST). Subjects performed unilateral knee-extension exercise 3 days/wk for 9 wk. Bilateral muscle biopsies from the vastus lateralis were assessed for muscle damage via electron microscopy. HRST resulted in a 38 and 25% increase in strength in the young and older women, respectively (P < 0.05), but there were no between-group differences. In the young women, 2-4% of muscle fibers exhibited damage before and after training in both the trained and untrained legs (P = not significant). In contrast, muscle damage increased significantly after HRST, from 5 to 17% of fibers damaged (P < 0.01), in the older women in the trained leg compared with only 2 and 5% of fibers damaged in the untrained leg before and after training, respectively. The present results indicate that older women exhibit higher levels of muscle damage after chronic HRST than do young women.  相似文献   

15.
The ability to develop muscle force rapidly may be a very important factor to prevent a fall and to perform other tasks of daily life. However, information is still lacking on the range of training-induced neuromuscular adaptations in elderly humans recovering from a period of disuse. Therefore, the present study examined the effect of three types of training regimes after unilateral prolonged disuse and subsequent hip-replacement surgery on maximal muscle strength, rapid muscle force [rate of force development (RFD)], muscle activation, and muscle size. Thirty-six subjects (60-86 yr) were randomized to a 12-wk rehabilitation program consisting of either 1) strength training (3 times/wk for 12 wk), 2) electrical muscle stimulation (1 h/day for 12 wk), or 3) standard rehabilitation (1 h/day for 12 wk). The nonoperated side did not receive any intervention and thereby served as a within-subject control. Thirty subjects completed the trial. In the strength-training group, significant increases were observed in maximal isometric muscle strength (24%, P < 0.01), contractile RFD (26-45%, P < 0.05), and contractile impulse (27-32%, P < 0.05). No significant changes were seen in the two other training groups or in the nontrained legs of all three groups. Mean electromyogram signal amplitude of vastus lateralis was larger in the strength-training than in the standard-rehabilitation group at 5 and 12 wk (P < 0.05). In contrast to traditional physiotherapy and electrical stimulation, strength training increased muscle mass, maximal isometric strength, RFD, and muscle activation in elderly men and women recovering from long-term muscle disuse and subsequent hip surgery. The improvement in both muscle mass and neural function is likely to have important functional implications for elderly individuals.  相似文献   

16.
Vandenberghe, K., M. Goris, P. Van Hecke, M. Van Leemputte,L. Vangerven, and P. Hespel. Long-term creatine intake isbeneficial to muscle performance during resistance training. J. Appl. Physiol. 83(6):2055-2063, 1997.The effects of oral creatine supplementation onmuscle phosphocreatine (PCr) concentration, muscle strength, and bodycomposition were investigated in young female volunteers(n = 19) during 10 wk ofresistance training (3 h/wk). Compared with placebo, 4 days ofhigh-dose creatine intake (20 g/day) increased(P < 0.05) muscle PCr concentration by 6%. Thereafter, this increase was maintained during 10 wk of training associated with low-dose creatine intake (5 g/day).Compared with placebo, maximal strength of the muscle groups trained,maximal intermittent exercise capacity of the arm flexors, and fat-free mass were increased 20-25, 10-25, and 60% more(P < 0.05), respectively, duringcreatine supplementation. Muscle PCr and strength, intermittent exercise capacity, and fat-free mass subsequently remained at a higherlevel in the creatine group than in the placebo group during 10 wk ofdetraining while low-dose creatine was continued. Finally, on cessationof creatine intake, muscle PCr in the creatine group returned to normalwithin 4 wk. It is concluded that long-term creatine supplementationenhances the progress of muscle strength during resistance training insedentary females.

  相似文献   

17.
We investigated the acute and long-term effects of low-intensity resistance exercise (knee extension) with slow movement and tonic force generation on muscular size and strength. This type of exercise was expected to enhance the intramuscular hypoxic environment that might be a factor for muscular hypertrophy. Twenty-four healthy young men without experience of regular exercise training were assigned into three groups (n = 8 for each) and performed the following resistance exercise regimens: low-intensity [ approximately 50% of one-repetition maximum (1RM)] with slow movement and tonic force generation (3 s for eccentric and concentric actions, 1-s pause, and no relaxing phase; LST); high-intensity ( approximately 80% 1RM) with normal speed (1 s for concentric and eccentric actions, 1 s for relaxing; HN); low-intensity with normal speed (same intensity as for LST and same speed as for HN; LN). In LST and HN, the mean repetition maximum was 8RM. In LN, both intensity and amount of work were matched with those for LST. Each exercise session consisting of three sets was performed three times a week for 12 wk. In LST and HN, exercise training caused significant (P < 0.05) increases in cross-sectional area determined with MRI and isometric strength (maximal voluntary contraction) of the knee extensors, whereas no significant changes were seen in LN. Electromyographic and near-infrared spectroscopic analyses showed that one bout of LST causes sustained muscular activity and the largest muscle deoxygenation among the three types of exercise. The results suggest that intramuscular oxygen environment is important for exercise-induced muscular hypertrophy.  相似文献   

18.
Aging of skeletal muscle: a 12-yr longitudinal study.   总被引:14,自引:0,他引:14  
The present study examines age-related changes in skeletal muscle size and function after 12 yr. Twelve healthy sedentary men were studied in 1985-86 (T1) and nine (initial mean age 65.4 +/- 4.2 yr) were reevaluated in 1997-98 (T2). Isokinetic muscle strength of the knee and elbow extensors and flexors showed losses (P < 0.05) ranging from 20 to 30% at slow and fast angular velocities. Computerized tomography (n = 7) showed reductions (P < 0.05) in the cross-sectional area (CSA) of the thigh (12.5%), all thigh muscles (14.7%), quadriceps femoris muscle (16.1%), and flexor muscles (14. 9%). Analysis of covariance showed that strength at T1 and changes in CSA were independent predictors of strength at T2. Muscle biopsies taken from vastus lateralis muscles (n = 6) showed a reduction in percentage of type I fibers (T1 = 60% vs. T2 = 42%) with no change in mean area in either fiber type. The capillary-to-fiber ratio was significantly lower at T2 (1.39 vs. 1. 08; P = 0.043). Our observations suggest that a quantitative loss in muscle CSA is a major contributor to the decrease in muscle strength seen with advancing age and, together with muscle strength at T1, accounts for 90% of the variability in strength at T2.  相似文献   

19.
We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes'' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players'' physical conditioning level.  相似文献   

20.
The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 +/- 1 yr; range 80-86 yr, 74 +/- 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at approximately 70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers (n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers (n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased (P < 0.05) 23 +/- 4 kg (56 +/- 4 to 79 +/- 7 kg; 41%). Muscle CSA increased (P < 0.05) 3 +/- 1 cm2 (120 +/- 7 to 123 +/- 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young ( approximately 20 yr) and old ( approximately 70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号