首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Since the development of industrialization, urbanization and agriculture, soils have been subjected to numerous variations in environmental conditions, which have resulted in modifications of the taxonomic diversity and functioning of the indigenous microbial communities. As a consequence, the functional significance of these losses/modifications of biodiversity, in terms of the capacity of ecosystems to maintain the functions and services on which humanity depends, is now of pivotal importance. In this context, one of the main challenges in soil microbial ecology is to better understand and predict the processes that drive soil microbial diversity and the link between diversity and ecosystem process. This review describes past, present and ongoing conceptual and methodological strategies employed to better assess and understand the distribution and evolution of soil microbial diversity with the aim of increasing our capacity to translate such diversity into soil biological functioning and, more widely, into ecosystem services.  相似文献   

3.

Background  

Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species') of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing) protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela). Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets.  相似文献   

4.
The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes.  相似文献   

5.
Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used direct sequencing of total DNA from water samples to compare the microbial communities of two distinct coastal regions exposed to different anthropogenic pressures: the highly polluted Port of Genoa and the protected area of Montecristo Island in the Mediterranean Sea. Analysis of the metagenomes revealed significant differences in both microbial diversity and abundance between the two areas, reflecting their distinct ecological habitats and anthropogenic stress conditions. Our results indicate that the combination of next generation sequencing (NGS) technologies and bioinformatics tools presents a new approach to monitor the diversity and the ecological status of aquatic ecosystems. Integration of metagenomics into environmental monitoring campaigns should enable the impact of the anthropogenic pressure on microbial biodiversity in various ecosystems to be better assessed and also predicted.  相似文献   

6.
土壤微生物多样性研究是整个生态系统研究中最薄弱的环节之一。高通量测序技术和生物信息学方法的快速发展极大地促进了土壤微生物多样性监测研究的深度和广度。目前世界范围内已经开展了一些综合的微生物多样性研究计划, 如地球微生物计划。这些计划存在的主要问题是缺少动态的监测、研究方法不统一、数据整合困难等。中国土壤微生物多样性监测网(Soil Microbial Observation Network, SMON)是中国生物多样性监测与研究网络(Chinese Biodiversity Monitoring and Research Network, Sino BON)的重要组成部分, 本文中我们对该监测网的建设提出了一些思考。在监测布局上建议选择我国南北水热梯度下的森林生态系统、东西降雨梯度下的草原生态系统、典型湿地生态系统及重要农田生态系统, 同时依托现已建成的生物多样性监测网络观测点或大样地, 布设监测样点, 利用现代环境基因组学和生物信息学技术, 重点围绕土壤微生物群落和功能基因组的组成与多样性, 开展长期定点的动态监测。监测的结果将以名录、数据集或图鉴的形式发布, 包括中国典型生态系统中土壤细菌、古菌、真菌与地衣、土壤宏基因组和重要功能基因的组成和多样性等数据, 同时建设土壤生物大数据平台, 达到监测数据的储存、查询、分析、下载、成图的功能。通过土壤微生物多样性监测, 将阐明我国重要森林、草地、湿地、农田生态系统中土壤微生物组成、多样性、功能基因的时空变化特征和驱动机制, 建立土壤微生物多样性变化与生态系统功能的关系及相关的模型, 预测全球环境条件变化下土壤微生物的演变规律, 为土壤微生物多样性资源的保护和利用提供科学依据。  相似文献   

7.
Freshwater is a critical resource for human survival but severely threatened by anthropogenic activities and climate change. These changes strongly impact the abundance and diversity of the microbial communities which are key players in the functioning of these aquatic ecosystems. Although widely documented since the emergence of high-throughput sequencing approaches, the information on these natural microbial communities is scattered among thousands of publications and it is therefore difficult to investigate the temporal dynamics and the spatial distribution of microbial taxa within or across ecosystems. To fill this gap and in the FAIR principles context we built a manually curated and standardized microbial freshwater –omics database (FreshOmics). Based on recognized ontologies (ENVO, MIMICS, GO, ISO), FreshOmics describes 29 different types of freshwater ecosystems and uses standardized attributes to depict biological samples, sequencing protocols and article attributes for more than 2487 geographical locations across 71 countries around the world. The database contains 24,808 sequence identifiers (i.e., Run_Id / Exp_ID, mainly from SRA/DDBJ SRA/ENA, GSA and MG-RAST repositories) covering all sequence-based -omics approaches used to investigate bacteria, archaea, microbial eukaryotes, and viruses. Therefore, FreshOmics allows accurate and comprehensive analyses of microbial communities to answer questions related to their roles in freshwater ecosystems functioning and resilience, especially through meta-analysis studies. This collection also highlights different sort of errors in published works (e.g., wrong coordinates, sample type, material, spelling).  相似文献   

8.
Our conceptual models of microbial food webs in aquatic ecosystems provide a unifying hypothesis for the design and conduct of field studies. Our ability to provide a rigorous test of these hypotheses, however, relies to a large extent on the availability of precise and accurate methods. Although considerable progress has been made over the past two decades, unambiguous resolution of in situ microbial rates and processes will probably require improved or novel methodologies.  相似文献   

9.
The emergence of massively parallel sequencing technology has revolutionized microbial profiling, allowing the unprecedented comparison of microbial diversity across time and space in a wide range of host-associated and environmental ecosystems. Although the high-throughput nature of such methods enables the detection of low-frequency bacteria, these advances come at the cost of sequencing read length, limiting the phylogenetic resolution possible by current methods. Here, we present a generic approach for integrating short reads from large genomic regions, thus enabling phylogenetic resolution far exceeding current methods. The approach is based on a mapping to a statistical model that is later solved as a constrained optimization problem. We demonstrate the utility of this method by analyzing human saliva and Drosophila samples, using Illumina single-end sequencing of a 750 bp amplicon of the 16S rRNA gene. Phylogenetic resolution is significantly extended while reducing the number of falsely detected bacteria, as compared with standard single-region Roche 454 Pyrosequencing. Our approach can be seamlessly applied to simultaneous sequencing of multiple genes providing a higher resolution view of the composition and activity of complex microbial communities.  相似文献   

10.
In-depth knowledge about spatial and temporal variation in microbial diversity and function is needed for a better understanding of ecological and evolutionary responses to global change. In particular, the study of microbial ancient DNA preserved in sediment archives from lakes and oceans can help us to evaluate the responses of aquatic microbes in the past and make predictions about future biodiversity change in those ecosystems. Recent advances in molecular genetic methods applied to the analysis of historically deposited DNA in sediments have not only allowed the taxonomic identification of past aquatic microbial communities but also enabled tracing their evolution and adaptation to episodic disturbances and gradual environmental change. Nevertheless, some challenges remain for scientists to take full advantage of the rapidly developing field of paleo-genetics, including the limited ability to detect rare taxa and reconstruct complete genomes for evolutionary studies. Here, we provide a brief review of some of the recent advances in the field of environmental paleomicrobiology and discuss remaining challenges related to the application of molecular genetic methods to study microbial diversity, ecology, and evolution in sediment archives. We anticipate that, in the near future, environmental paleomicrobiology will shed new light on the processes of microbial genome evolution and microbial ecosystem responses to quaternary environmental changes at an unprecedented level of detail. This information can, for example, aid geological reconstructions of biogeochemical cycles and predict ecosystem responses to environmental perturbations, including in the context of human-induced global changes.  相似文献   

11.
The study of Antarctic cyanobacterial diversity has been mostly limited to morphological identification and traditional molecular techniques. High‐throughput sequencing (HTS) allows a much better understanding of microbial distribution in the environment, but its application is hampered by several methodological and analytical challenges. In this work, we explored the use of HTS as a tool for the study of cyanobacterial diversity in Antarctic aquatic mats. Our results highlight the importance of using artificial communities to validate the parameters of the bioinformatics procedure used to analyze natural communities, since pipeline‐dependent biases had a strong effect on the observed community structures. Analysis of microbial mats from five Antarctic lakes and an aquatic biofilm from the Sub‐Antarctic showed that HTS is a valuable tool for the assessment of cyanobacterial diversity. The majority of the operational taxonomic units retrieved were related to filamentous taxa such as Leptolyngbya and Phormidium, which are common genera in Antarctic lacustrine microbial mats. However, other phylotypes related to different taxa such as Geitlerinema, Pseudanabaena, Synechococcus, Chamaesiphon, Calothrix, and Coleodesmium were also found. Results revealed a much higher diversity than what had been reported using traditional methods and also highlighted remarkable differences between the cyanobacterial communities of the studied lakes. The aquatic biofilm from the Sub‐Antarctic had a distinct cyanobacterial community from the Antarctic lakes, which in turn displayed a salinity‐dependent community structure at the phylotype level.  相似文献   

12.
张欣  邓巍  朱娅佼  李娜  肖文  杨晓燕 《生态学报》2022,42(12):5059-5066
为探究微生物在流域中的水、陆分布差异和相互关系,对澜沧江两条支流捕食线虫真菌多样性水陆分布进行了调查研究。在枯水期,以澜沧江一级支流沘江和黑惠江为研究区域,系统布设12个采样点(水流交汇点),每个采样点采集水、陆对称样品各5份,共采集土样120份。结合传统分离纯化、形态学及分子生物学方法筛选和鉴定菌株,按照《Nematode-Trapping Fungi》进行分类,共获得2属13种88株捕食线虫真菌;其中,陆地样品中共分离到2属11种45株,水体底泥中分离出1属10种43株,检出率分别为41.67%和53.33%。结果表明,澜沧江两条支流捕食线虫真菌在物种、属、群落结构3个层面上均存在水陆差异,也相互联系;陆地土壤可能是流域内捕食线虫真菌多样性的源,水流是其重要的传播因子。在流域生态系统内,水陆间的扩散限制和水流的连通性都是维持微生物物种多样性的重要机制。  相似文献   

13.
Glaciers represent important biomes of Earth and are recognized as key species pools for downstream aquatic environments. Worldwide, rapidly receding glaciers are driving shifts in hydrology, species distributions and threatening microbial diversity in glacier-fed aquatic ecosystems. However, the impact of glacier surface snow-originating taxa on the microbial diversity in downstream aquatic environments has been little explored. To elucidate the contribution of glacier surface snow-originating taxa to bacterial diversity in downstream aquatic environments, we collected samples from glacier surface snows, downstream streams and lakes along three glacier-fed hydrologic continuums on the Tibetan Plateau. Our results showed that glacier stream acts as recipients and vectors of bacteria originating from the glacier environments. The contributions of glacier surface snow-originating taxa to downstream bacterial communities decrease from the streams to lakes, which was consistently observed in three geographically separated glacier-fed ecosystems. Our results also revealed that some rare snow-originating bacteria can thrive along the hydrologic continuums and become dominant in downstream habitats. Finally, our results indicated that the dispersal patterns of bacterial communities are largely determined by mass effects and increasingly subjected to local sorting of species along the glacier-fed hydrologic continuums. Collectively, this study provides insights into the fate of bacterial assemblages in glacier surface snow following snow melt and how bacterial communities in aquatic environments are affected by the influx of glacier snow-originating bacteria.  相似文献   

14.
This paper reviews research in microbial diversity associated with ascidians (commonly known as sea squirts). The application of culture-dependent and culture-independent techniques is introduced in detail and these methods are analyzed for their advantages and limitations. Because of the limitations of available media and cultivation conditions, culture-dependent methods can only reveal a limited portion of the microorganisms in ascidians. However, the acquisition of typical microbial community members in culture remains a valuable resource for exploring their bioactive potential and relationships with the ascidian hosts. The application of metagenomic library methods has greatly accelerated ascidian metabolites studies. The next-generation sequencing techniques have led to the acquisition of an unprecedented quantity of ascidian microorganism data, providing the most comprehensive information about ascidian microbial diversity. Ascidians provide unique ecological niches that harbor an unexpected diversity of microorganisms different from planktonic bacteria in the local seawater. Microbial communities associated with ascidians tend to be species-specific and tissue-specific. Different tissue of the same ascidian may be associated with different microbial communities.  相似文献   

15.
Since the emergence of the ‘microbial loop’ concept, heterotrophic flagellates have received particular attention as grazers in aquatic ecosystems. These microbes have historically been regarded incorrectly as a homogeneous group of bacterivorous protists in aquatic systems. More recently, environmental rDNA surveys of small heterotrophic flagellates in the pelagic zone of freshwater ecosystems have provided new insights. (i) The dominant phyla found by molecular studies differed significantly from those known from morphological studies with the light microscope, (ii) the retrieved phylotypes generally belong to well-established eukaryotic clades, but there is a very large diversity within these clades and (iii) a substantial part of the retrieved sequences cannot be assigned to bacterivorous but can be assigned instead to parasitic and saprophytic organisms, such as zoosporic true fungi (chytrids), fungus-like organisms (stramenopiles), or virulent alveolate parasites (Perkinsozoa and Amoebophrya sp.). All these microorganisms are able to produce small zoospores to assure dispersal in water during their life-cycles. Based on the existing literature on true fungi and fungus-like organisms, and on the more recently published eukaryotic rDNA environmental studies and morphological observations, we conclude that previously overlooked microbial diversity and related ecological potentials require intensive investigation (i) for an improved understanding of the roles of heterotrophic flagellates in pelagic ecosystems and (ii) to properly integrate the concept of ‘the microbial loop’ into modern pelagic microbial ecology.  相似文献   

16.
Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.  相似文献   

17.
Viruses are arguably the simplest form of life yet they play a crucial role in regulating planetary processes. From shuttling genes to 'lubricating' microbial loop dynamics, viruses are integral in shaping microbial ecology. In every environment on Earth the role of viruses goes far beyond the simple infect-replicate-kill cycle. Their enormous abundance and seemingly infinite diversity provide the vital clues to the true function of viruses. New 'omic' approaches are now allowing researchers to gain extraordinary insights into virus diversity and inferred function, particularly within aquatic environments. The development of molecular markers and application of techniques including microarrays, metagenomic sequencing and proteomic analysis are now being applied to virus communities. Despite this shift towards culture-independent approaches it has proved difficult to derive useful information about infection strategies since so much of the sequence information has no database matches. Future advances will involve tools such as microarrays to help determine the functionality of unknown genes. Sequence information should be considered as a starting point for asking questions and developing hypotheses about the role of viruses. It is an exciting new era for virus ecology and when used in combination with more traditional approaches, virus genomics will give us access to their ecological function on an unprecedented scale.  相似文献   

18.
赵卓丽  李冰  蒋宏忱 《微生物学报》2022,62(6):2165-2187
南极大陆冰盖下存在液态水,形成了由冰下湖、冰下河/溪、冰封湖和冰架下水体等组成的冰下水生态系统,具有低温、黑暗和寡营养等极端的环境条件特征。微生物主导了南极冰下水生态系统,其具有丰富多样的种群构成、功能形式和独特的适应机制,在生源元素生物地球化学循环过程中起了重要作用。研究南极冰下微生物群落的生态特征及其参与的生源元素地球化学循环过程,可为揭示地球生命演化和探索外星生命提供指示,具有重要的科学意义。本文综述了南极冰下水生态系统的极端环境条件、冰下微生物的多样性、冰下微生物参与的生物地球化学循环以及冰下微生物的适极机理,最后基于研究现状展望了南极冰下微生物的未来研究方向。  相似文献   

19.
It's all relative: ranking the diversity of aquatic bacterial communities   总被引:1,自引:0,他引:1  
The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.  相似文献   

20.
Significance of predation by protists in aquatic microbial food webs   总被引:31,自引:0,他引:31  
Predation in aquatic microbial food webs is dominated by phagotrophic protists, yet these microorganisms are still understudied compared to bacteria and phytoplankton. In pelagic ecosystems, predaceous protists are ubiquitous, range in size from 2 μm flagellates to >100 μm ciliates and dinoflagellates, and exhibit a wide array of feeding strategies. Their trophic states run the gamut from strictly phagotrophic, to mixotrophic: partly autotrophic and partly phagotrophic, to primarily autotrophic but capable of phagotrophy. Protists are a major source of mortality for both heterotrophic and autotrophic bacteria. They compete with herbivorous meso- and macro-zooplankton for all size classes of phytoplankton. Protist grazing may affect the rate of organic sinking flux from the euphotic zone. Protist excretions are an important source of remineralized nutrients, and of colloidal and dissolved trace metals such as iron, in aquatic systems. Work on predation by protists is being facilitated by methodological advances, e.g., molecular genetic analysis of protistan diversity and application of flow cytometry to study population growth and feeding rates. Examples of new research areas are studies of impact of protistan predation on the community structure of prey assemblages and of chemical communication between predator and prey in microbial food webs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号