首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basement membrane protein laminin-5, a heterotrimer of laminin alpha3, beta3, and gamma2 chains, potently promotes cellular adhesion and motility. It has been supposed that the carboxyl-terminal globular region of the alpha3 chain consisting of five distinct domains (G1 to G5) is important for its interaction with integrins. To clarify the function of each G domain, we transfected cDNAs for the full-length (wild type (WT)) and five deletion derivatives (DeltaGs) of the alpha3 chain into human fibrosarcoma cell line HT1080, which expressed and secreted the laminin beta3 and gamma2 chains but not the alpha3 chain. The transfectants with the alpha3 chain cDNAs lacking G5 (DeltaG(5)), G4-5 (DeltaG(4-5)), G3-5 (DeltaG(3-5)), and G2-5 (DeltaG(2-5)) secreted laminin-5 variants at levels comparable to that with WT cDNA. However, the transfectant with the cDNA without any G domains (DeltaG(1-5)) secreted little laminin-5, suggesting that the G domains are essential for the efficient assembly and secretion of the heterotrimer alpha3beta3gamma2. The transfectants with WT, DeltaG(5), and DeltaG(4-5) cDNAs survived in serum-free medium longer than those with DeltaG(3-5), DeltaG(2-5), and DeltaG(1-5) cDNAs. The transfectants with WT, DeltaG(5), and DeltaG(4-5) cDNAs secreted apparently the same size of laminin-5, which lacked G4 and G5 due to proteolytic cleavage between G3 and G4, and these laminin-5 forms potently promoted integrin alpha(3)beta(1)-dependent cell adhesion and migration. However, the laminin-5 forms of DeltaG(3-5) and DeltaG(2-5) hardly promoted the cell adhesion and motility. These findings demonstrate that the G3 domain, but not the G4 and G5 domains, of the alpha3 chain is essential for the potent promotion of cell adhesion and motility by laminin-5.  相似文献   

2.
The basement membrane protein laminin-5 (LN5; alpha3beta3gamma2) undergoes specific proteolytic processing of the 190-kDa alpha3 chain to the 160-kDa form after the secretion, releasing its COOH-terminal, LG4-5 domain. To clarify the biological significance of this processing, we tried to express a recombinant precursor LN5 with a 190-kDa alpha3 chain (pre-LN5), in which the cleavage sequence Gln-Asp was changed to Ala-Ala by point mutation. When the wild-type and mutated LN5 heterotrimers were expressed in HEK293 cells, the wild-type alpha3 chain was completely cleaved, whereas the mutated alpha3 chain was partially cleaved at the same cleavage site (Ala-Ala). pre-LN5 was preferentially deposited on the extracellular matrix, but this deposition was effectively blocked by exogenous heparin. This suggests that interaction between the LG4-5 domain and heparan sulfate proteoglycans on the cell surface and/or extracellular matrix is important in the matrix assembly of LN5. Next, we purified both pre-LN5 and the mature LN5 with the processed, 160-kDa alpha3 chain (mat-LN5) from the conditioned medium of the HEK293 cells and compared their biological activities. mat-LN5 showed higher activities to promote cell adhesion, cell scattering, cell migration, and neurite outgrowth than pre-LN5. These results indicate that the proteolytic removal of LG4-5 from the 190-kDa alpha3 chain converts the precursor LN5 from a less active form to a fully active form. Furthermore, the released LG4-5 fragment stimulated the neurite outgrowth in the presence of mat-LN5, suggesting that LG4-5 synergistically enhances integrin signaling as it is released from the precursor LN5.  相似文献   

3.
Basal keratinocytes of the epidermis adhere to their underlying basement membrane through a specific interaction with laminin-5, which is composed by the association of alpha3, beta3, and gamma2 chains. Laminin-5 has the ability to induce either stable cell adhesion or migration depending on specific processing of different parts of the molecule. One event results in the cleavage of the carboxyl-terminal globular domains 4 and 5 (LG4/5) of the alpha3 chain. In this study, we recombinantly expressed the human alpha3LG4/5 fragment in mammalian cells, and we show that this fragment induces adhesion of normal human keratinocytes and fibrosarcoma-derived HT1080 cells in a heparan- and chondroitin sulfate-dependent manner. Immunoprecipitation experiments with Na2 35SO4-labeled keratinocyte and HT1080 cell lysates as well as immunoblotting experiments revealed that the major proteoglycan receptor for the alpha3LG4/5 fragment is syndecan-1. Syndecan-4 from keratinocytes also bound to alpha3LG4/5. Furthermore we could show for the first time that unprocessed laminin-5 specifically binds syndecan-1, while processed laminin-5 does not. These results demonstrate that the LG4/5 modules within unprocessed laminin-5 permit its cell binding activity through heparan and chondroitin sulfate chains of syndecan-1 and reinforce previous data suggesting specific properties for the precursor molecule.  相似文献   

4.
Various laminin isoforms have specific biological functions depending on their structures. Laminin 5A, which consists of the three truncated chains alpha3A, beta3, and gamma2, is known to have strong activity to promote cell adhesion and migration, whereas a laminin 5 variant consisting of a full-sized alpha3 chain (alpha3Beta) and the beta3 and gamma2 chains, laminin 5B, has not been characterized yet. In the present study, we for the first time cloned a full-length human laminin alpha3B cDNA and isolated the human laminin 5B protein. The molecular size of the mature alpha3B chain (335 kDa) was approximately twice as large as the mature alpha3A chain in laminin 5A. Laminin 5B had significantly higher cell adhesion and cell migration activities than laminin 5A. In addition, laminin 5B potently stimulated cell proliferation when added into the culture medium directly. Furthermore, we found that the alpha3B chain undergoes proteolytic cleavage releasing a 190-kDa NH(2)-terminal fragment. The 190-kDa fragment had activities to promote cellular adhesion, migration, and proliferation through its interaction with integrin alpha(3)beta(1). These activities of the NH(2)-terminal structure of the alpha3B chain seem to contribute to the prominent biological activities and the physiological functions of laminin 5B.  相似文献   

5.
6.
Human laminin-5 fragments, comprising the heterotrimeric C-terminal part of the coiled-coil (CC) domain and the globular (G) domain with defined numbers of LG subdomains, were produced recombinantly. The alpha3' chain with all five LG subdomains was processed proteolytically in a manner similar to the wild-type alpha3 chain. Conditions were established under which the proteolytic cleavage was either inhibited in cell culture or was brought to completion in vitro. The shorter chains of the laminin-5CCG molecule, beta3'and gamma2', produced in a bacterial expression system associated into heterodimers, which then combined spontaneously with the alpha3' chains in vitro to form heterotrimeric laminin-5CCG molecules. Only heterotrimeric laminin-5CCG with at least subdomains LG1-3, but not the single chains, supported binding of soluble alpha3beta1 integrin, proving the coiled-coil domain of laminin-5 to be essential for its interaction with alpha3beta1 integrin. The N-glycosylation sites in wild-type alpha3 chain were mapped by mass spectrometry. Their location in a structural model of the LG domain suggested that large regions on both faces of the LG1 and LG2 domains are inaccessible by other proteins. However, neither heterotrimerization nor alpha3beta1 integrin binding was affected by the loss of N-linked glycoconjugates. After the proteolytic cleavage between the subdomains LG3 and LG4, the LG4-5 tandem domain dissociated from the rest of the G domain. Further, the laminin-5CCG molecule with the alpha3'LG1-3 chain showed an increased binding affinity for alpha3beta1 integrin, indicating that proteolytic processing of laminin-5 influences its interaction with alpha3beta1 integrin.  相似文献   

7.
The basement membrane protein laminin-5 promotes cell adhesion and migration. The carboxyl-terminal G3 domain in the alpha3 chain is essential for the unique activity of laminin-5. To investigate the function of the G3 domain, we prepared various recombinant laminin-5 forms with a partially deleted or mutated G3 domain. The deletion of the carboxyl-terminal 28 amino acids (region III) markedly decreased the cell adhesion activity with a slight loss of the cell motility activity toward BRL and EJ-1 cells. This change was attributed to the loss of Lys-Arg-Asp sequence. Further deletion of 83 amino acids (region II) led to almost complete loss of the cell motility activity. All charged amino acid residues tested in this region were not responsible for the activity loss. These results suggest that the G3 domain contains two distinct regions that differently regulate cell adhesion and migration. Analysis of laminin-5 receptors showed that integrins alpha3beta1, alpha6beta1, and alpha6beta4 had different but synergistic effects on cell adhesion and migration on laminin-5. However, the structural change of the G3 domain appeared not to change integrin specificity. The present study demonstrates that the G3 domain in laminin-5 plays a central role to produce different biological effects on cells.  相似文献   

8.
We have previously shown that laminin-5 is expressed in the human thymic medulla, in which mature thymocytes are located. We now report that laminin-5 promotes migration of mature medullary thymocytes, whereas it has no effect on cortical immature thymocytes. Migration was inhibited by blocking mAbs directed against laminin-5 integrin receptors and by inhibitors of metalloproteinases. Interactions of thymocytes with laminin-5 induced a strong up-regulation of active metalloproteinase-14. However, we found that thymocytes did not cleave the laminin-5 gamma(2) chain, suggesting that they do not use the same pathway as epithelial cells to migrate on laminin-5. Interactions of thymocytes with laminin-5 also induced the release of a soluble fragment of CD44 cell surface molecule. Moreover, CD44-rich supernatants induced thymocyte migration in contrast with supernatants depleted in CD44 by immunoadsorption. CD44 cleavage was recently reported to be due to metalloproteinase-14 activation and led to increased migration in cancer cells. Thus, in this study, we show that laminin-5 promotes human mature thymocyte migration in vitro via a multimolecular mechanism involving laminin-5 integrin receptors, metalloproteinase-14 and CD44. These data suggest that, in vivo, laminin-5 may function in the migration of mature thymocytes within the medulla and be part of the thymic emigration process.  相似文献   

9.
Laminin-5, a major adhesive ligand for epithelial cells, undergoes processing of its gamma2 and alpha3 chains. This study investigated the mechanism of laminin-5 processing by keratinocytes. BI-1 (BMP-1 isoenzyme inhibitor-1), a selective inhibitor of a small group of astacin-like metalloproteinases, which includes bone morphogenetic protein 1 (BMP-1), mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mammalian Tolloid-like 2 (mTLL-2), inhibited the processing of laminin-5 gamma2 and alpha3 chains in keratinocyte cultures in a dose-dependent manner. In a proteinase survey, all BMP-1 isoenzymes processed human laminin-5 gamma2 and alpha3 chains to 105- and 165-kDa fragments, respectively. In contrast, MT1-MMP and MMP-2 did not cleave the gamma2 chain of human laminin-5 but processed the rat laminin gamma2 chain to an 80-kDa fragment. An immunoblot and quantitative PCR survey of the BMP-1 isoenzymes revealed expression of mTLD in primary keratinocyte cultures but little or no expression of BMP-1, mTLL-1, or mTLL-2. mTLD was shown to cleave the gamma2 chain at the same site as the previously identified BMP-1 cleavage site. In addition, mTLD/BMP-1 null mice were shown to have deficient laminin-5 processing. Together, these data identify laminin-5 as a substrate for mTLD, suggesting a role for laminin-5 processing by mTLD in the skin.  相似文献   

10.
Laminin-6 (LN6) and laminin-5 (LN5), which share the common integrin-binding domain in the laminin alpha3 chain, are thought to cooperatively regulate cellular functions, but the former has poorly been characterized. Human fibrosarcoma HT1080 cells expressing an exogenous alpha3 chain were found to secrete LN6 with the full-length alpha3 chain and a smaller amount of its processed form lacking the carboxyl-terminal G4-5 domain, besides mature LN5 without G4-5 (mat-LN5). We prepared the unprocessed LN6 and mat-LN5, as well as LN6 mutants without G4-5 (LN6DeltaG4-5) or G5 (LN6DeltaG5). These laminins supported attachment of HT1080 cells and human keratinocytes (HaCaT) through integrins alpha(3)beta(1) and/or alpha(6)beta(1). LN6DeltaG4-5, LN6DeltaG5, and mat-LN5 promoted rapid cell spreading, whereas LN6 did hardly. A purified G4-5 fragment of the laminin alpha3 chain supported cell attachment through interaction with heparan sulfate proteoglycans and promoted cell spreading in combination with mat-LN5 or LN6DeltaG4-5. These results imply that the G4-5 domain within the LN6 molecule suppresses cell adhesion, while the released G4-5 promotes it. The presence of G5 rather than the heparin-binding domain G4 was responsible for the impaired cell spreading activity of LN6. However, the unprocessed LN6 promoted cell spreading in the presence of mat-LN5. Unlike mat-LN5, both LN6DeltaG4-5 and LN6 did weakly or did not stimulate cell motility. These findings demonstrate that LN6 and LN5 have distinct biological activities, but they may cooperatively support cell adhesion. The proteolytic processing of the alpha3 chain seems to regulate the physiological functions of LN6.  相似文献   

11.
Laminin-5 is an important basement membrane protein that regulates cell adhesion and motility. It was previously found that the gamma2 chain of laminin-5 is transiently expressed in embryonic cartilage. This suggests a possible role of laminin-5 in chondrogenesis. Here, we examined this possibility using the murine teratocarcinoma cell line ATDC5. ATDC5 cells transiently and weakly expressed laminin-5 when they were stimulated for differentiation. Exogenous laminin-5 in either insoluble or soluble form strongly inhibited the differentiation phenotypes, i.e. formation of cartilaginous cell aggregates and production of chondrogenic marker proteins through its integrin-binding domain LG3 in the alpha3 chain. Laminin-5 had no effect on cell growth. In addition, we found that the laminin-5 with the 105-kDa, processed gamma2 chain suppressed differentiation more strongly than one with the 150-kDa gamma2 chain. This indicated that the proteolytic processing of gamma2 chain regulated the activity of laminin-5. However, a gamma2 chain short arm fragment had no effect on the chondrogenesis, and it rather suppressed the differentiation at excessive concentrations. These results suggest that laminin-5 and its processing modulate chondrogenic differentiation during development.  相似文献   

12.
Laminin alpha3 chain, a functionally key subunit of laminin-5, contains a large globular module (G module) which consists of a tandem repeat of five homologous LG modules (LG1-5). We previously demonstrated that the LG4 module of laminin alpha3 chain (alpha3 LG4) induces a matrix metalloproteinase-1 (MMP-1) expression through the interaction with syndecans leading to MAPK activation/IL-1beta expression signaling loop (Utani et al., J. Biol. Chem. 278, 34483-34490, 2003). Here, we show that a recombinant alpha3 LG4 and synthetic peptides containing syndecan binding motif induced a cell motility and a MMP-9 expression in ketarinocytes. The synthetic peptide (A3G756)-induced cell migration and MMP-9 upregulation were inhibited by each application of a heparin and an IL-1 receptor antagonist (IL-1RA), suggesting the involvement of syndecans and IL-1beta autocrine. Furthermore, the A3G756-induced cell motility was inhibited by an MMP-9 inhibitor and a neutralizing antibody of MMP-9, indicating induced cell motility was dependent on an MMP-9 activity. Taken these together, laminin-5 alpha3 LG4 module may play an important role in re-epithelialization at tissue remodeling.  相似文献   

13.
Processing of the laminin-5 (Ln-5) gamma 2 chain by membrane-type-1 matrix metalloproteinases (MT1-MMP) promotes migration and invasion of epithelial and tumor cells. We previously demonstrated that MT1-MMP cleaves the rat gamma 2 chain at two sites, producing two major C-terminal fragments of 100 (gamma 2') and 80 (gamma 2 x) kDa and releasing a 30-kDa fragment containing epidermal growth factor (EGF)-like motifs (domain III (DIII) fragment). The DIII fragment bound the EGF receptor (EGF-R) and stimulated cell scattering and migration. However, it is not yet clear whether human Ln-5 is processed in a similar fashion to rat Ln-5 because one of the two MT1-MMP cleavage sites present in rat gamma 2 is not found in human gamma 2. To identify the exact cleavage site for MT1-MMP in human Ln-5, we purified both the whole molecule as well as a monomeric form of human gamma 2 that is frequently expressed by malignant tumor cells. Like rat Ln-5, both the monomer of gamma 2, as well as the gamma 2 derived from intact Ln-5, were cleaved by MT1-MMP in vitro, generating C-terminal gamma 2' (100 kDa) and gamma 2 x (85 kDa) fragments and releasing DIII fragments (25 and 27k Da). In addition to the conserved first cleavage site used to generate gamma 2', two adjacent cleavage sites (Gly(559)-Asp(560) and Gly(579)-Ser(580)) were found that could generate the gamma 2 x and DIII fragments. Two of the three EGF-like motifs present in the rat DIII fragment are present in the 27-kDa human fragment, and like the rat DIII, this fragment can promote breast carcinoma cell migration by engaging the EGF-R. These results suggest that MT1-MMP processing of Ln-5 in human tumors may stimulate the EGF-R, resulting in increased tumor cell scattering and migration that could possibly increase their metastatic potential.  相似文献   

14.
The recruitment of osteoblast progenitors involves their migration and attachment to the sites of bone formation through interactions with matrix proteins. In a time-limited cell attachment assay, coated laminin-1 inhibits the adhesion of most rat calvaria cells but attaches specifically to osteoprogenitors, as quantified by the number of bone colonies (nodules) formed in the cultures. In order to determine the molecular mechanisms involved in osteoprogenitor attachment to laminin-1, we investigated the effects of laminin-5, a N-truncated laminin variant. In contrast to laminin-1, laminin-5 increased (1.5-fold) rat calvaria cell attachment and did not display any specific affinity for osteoprogenitors. In competition experiments on laminin-5, blocking antibodies directed against either the integrin chain beta1 or the C-terminal portion of laminin-5, as well as thermic denaturation of the protein at 80 degrees C, inhibited rat calvaria cell attachment, suggesting the implication of integrin alpha3beta1 binding to the conformation-dependent C-terminal end of laminin-5. Stepwise thermic denaturation did not suppress the anti-adhesive activity of laminin-1, while osteoprogenitor recruitment was abolished after denaturation above 60 degrees C, suggesting that different domains are involved in these two effects. The anti-beta1 antibody further decreased RC cell attachment to laminin-1, providing evidence for concomitant anti-adhesive and beta1-dependent cell attachment activities. Blocking of beta1 integrin subunit did not, however, reduce osteoprogenitor recruitment. Finally, purified elastase digestion fragment E1+, encompassing the N-terminal short arms of laminin-1, reproduced the effects of the complete molecule in the assay, while C-terminal fragment E8 did not display any cell attachment or osteoprogenitor recruitment properties. In conclusion, the anti-adhesive and osteoprogenitor-selective effects of laminin-1 on rat calvaria cell populations are distinct, beta1-integrin-independent properties mapping to the short arms of the molecule and thus not displayed by the truncated laminin-5.  相似文献   

15.
Glioma cell infiltration of brain tissue often occurs along the basement membrane (BM) of blood vessels. In the present study we have investigated the role of laminins, major structural components of BMs and strong promoters of cell migration. Immunohistochemical studies of glioma tumor tissue demonstrated expression of alpha2-, alpha3-, alpha4- and alpha5-, but not alpha1-, laminins by the tumor vasculature. In functional assays, alpha3 (Lm-332/laminin-5)- and alpha5 (Lm-511/laminin-10)-laminins strongly promoted migration of all glioma cell lines tested. alpha1-Laminin (Lm-111/laminin-1) displayed lower activity, whereas alpha2 (Lm-211/laminin-2)- and alpha4 (Lm-411/laminin-8)-laminins were practically inactive. Global integrin phenotyping identified alpha3beta1 as the most abundant integrin in all the glioma cell lines, and this laminin-binding integrin exclusively or largely mediate the cell migration. Moreover, pretreatment of U251 glioma cells with blocking antibodies to alpha3beta1 integrin followed by intracerebral injection into nude mice inhibited invasion of the tumor cells into the brain tissue. The cell lines secreted Lm-211, Lm-411 and Lm-511, at different ratios. The results indicate that glioma cells secrete alpha2-, alpha4- and alpha5-laminins and that alpha3- and alpha5-laminins, found in brain vasculature, selectively promote glioma cell migration. They identify alpha3beta1 as the predominant integrin and laminin receptor in glioma cells, and as a brain invasion-mediating integrin.  相似文献   

16.
The major laminin-binding integrin of skeletal, smooth, and heart muscle is alpha7beta1-integrin, which is structurally related to alpha6beta1. It occurs in three cytoplasmic splice variants (alpha7A, -B, and -C) and two extracellular forms (X1 and X2) which are developmentally regulated and differentially expressed in skeletal muscle. Previously, we have shown that ectopic expression of the alpha7beta-integrin splice variant in nonmotile HEK293 cells specifically induced cell locomotion on laminin-1 but not on fibronectin. To investigate the specificity and the mechanism of the alpha7-mediated cell motility, we expressed the three alpha7-chain cytoplasmic splice variants, as well as alpha6A- and alpha6B-integrin subunits in HEK293 cells. Here we show that all three alpha7 splice variants (containing the X2 domain), as well as alpha6A and alpha6B, promote cell attachment and stimulate cell motility on laminin-1 and its E8 fragment. Deletion of the cytoplasmic domain (excluding the GFFKR consensus sequence) from alpha7B resulted in a loss of the motility-enhancing effect. On laminin-2/4 (merosin), the predominant isoform in mature skeletal muscle, only alpha7-expressing cells showed enhanced motility, whereas cells transfected with alpha6A and alpha6B neither attached nor migrated on laminin-2. Adhesion of alpha7-expressing cells to both laminin-1 and laminin-2 was specifically inhibited by a new monoclonal antibody (6A11) specific for alpha7. Expression of the two extracellular splice variants alpha7X1 and alpha7X2 in HEK293 cells conferred different motilities on laminin isoforms: Whereas alpha7X2B promoted cell migration on both laminin-1 and laminin-2, alpha7X1B supported motility only on laminin-2 and not on laminin-1, although both X1 and X2 splice variants revealed similar adhesion rates to laminin-1 and -2. Fluorescence-activated cell sorter analysis revealed a dramatic reduction of surface expression of alpha6-integrin subunits after alpha7A or -B transfection; also, surface expression of alpha1-, alpha3-, and alpha5-integrins was significantly reduced. These results demonstrate selective responses of alpha6- and alpha7-integrins and of the alpha7 splice variants to laminin-1 and -2 and indicate differential roles in laminin-controlled cell adhesion and migration.  相似文献   

17.
Dystroglycan is a receptor for the basement membrane components laminin-1, -2, perlecan, and agrin. Genetic studies have revealed a role for dystroglycan in basement membrane formation of the early embryo. Dystroglycan binding to the E3 fragment of laminin-1 is involved in kidney epithelial cell development, as revealed by antibody perturbation experiments. E3 is the most distal part of the carboxyterminus of laminin alpha1 chain, and is composed of two laminin globular (LG) domains (LG4 and LG5). Dystroglycan-E3 interactions are mediated solely by discrete domains within LG4. Here we examined the role of this interaction for the development of mouse embryonic salivary gland and lung. Dystroglycan mRNA was expressed in epithelium of developing salivary gland and lung. Immunofluorescence demonstrated dystroglycan on the basal side of epithelial cells in these tissues. Antibodies against dystroglycan that block binding of alpha-dystroglycan to laminin-1 perturbed epithelial branching morphogenesis in salivary gland and lung organ cultures. Inhibition of branching morphogenesis was also seen in cultures treated with polyclonal anti-E3 antibodies. One monoclonal antibody (mAb 200) against LG4 blocked interactions between a-dystroglycan and recombinant laminin alpha1LG4-5, and also inhibited salivary gland and lung branching morphogenesis. Three other mAbs, also specific for the alpha1 carboxyterminus and known not to block branching morphogenesis, failed to block binding of alpha-dystroglycan to recombinant laminin alpha1LG4-5. These findings clarify why mAbs against the carboxyterminus of laminin alpha1 differ in their capacity to block epithelial morphogenesis and suggest that dystroglycan binding to alpha1LG4 is important for epithelial morphogenesis of several organs.  相似文献   

18.
The C-terminal G domains of laminin alpha chains have been implicated in various cellular and other interactions. The G domain of the alpha4 chain was now produced in transfected mammalian cells as two tandem arrays of LG modules, alpha4LG1-3 and alpha4LG4-5. The recombinant fragments were shown to fold into globular structures and could be distinguished by specific antibodies. Both fragments were able to bind to heparin, sulfatides, and the microfibrillar fibulin-1 and fibulin-2. They were, however, poor substrates for cell adhesion and had only a low affinity for the alpha-dystroglycan receptor when compared with the G domains of the laminin alpha1 and alpha2 chains. Yet antibodies to alpha4LG1-3 but not to alpha4LG4-5 clearly inhibited alpha(6)beta(1) integrin-mediated cell adhesion to laminin-8, indicating the participation of alpha4LG1-3 in a cell-adhesive structure of higher complexity. Proteolytic processing within a link region between the alpha4LG3 and alpha4LG4 modules was shown to occur during recombinant production and in endothelial and Schwann cell culture. Cleavage could be attributed to three different peptide bonds and is accompanied by the release of the alpha4LG4-5 segment. Immunohistology demonstrated abundant staining of alpha4LG1-3 in vessel walls, adipose, and perineural tissue. No significant staining was found for alpha4LG4-5, indicating their loss from tissues. Immunogold staining demonstrated an association of the alpha4 chain primarily with microfibrillar regions rather than with basement membranes, while laminin alpha2 chains appear primarily associated with various basement membranes.  相似文献   

19.
Treatment of the multifunctional alpha 2 beta 2 anthranilate synthase complex of Neurospora crassa with elastase produced two fragments of the complex, one possessing anthranilate synthase activity and the other having both indole-3-glycerol phosphate (InGP) synthase and N-(5'-phosphoribosyl)anthranilate (PRA) isomerase activities. Sequencing the NH2 terminus of the InGP synthase-PRA isomerase fragment revealed that cleavage was between positions 237 and 238 of the beta-subunit within a segment of the polypeptide chain which links the glutamine-binding (G) domain with the InGP synthase-PRA isomerase domains. The fragment containing anthranilate synthase activity has a molecular weight of 98,000, as estimated by gel filtration, and is composed of an apparently intact alpha-subunit (70 kDa) associated with the G-domain fragment (29 kDa) derived from the beta-subunit. The alpha X G-domain complex was resistant to further degradation by elastase. When either the alpha 2 beta 2 complex or the alpha X G-domain complex was incubated with trypsin, the alpha-subunit was degraded to a 66-kDa alpha-fragment with reduced enzymatic activity, which was resistant to further cleavage. In contrast, incubation of alpha-subunit alone with either elastase or trypsin resulted in its complete degradation, indicating that association of the alpha-subunit with either G-domain or beta-subunit protected the alpha-subunit from this extensive degradation. A model for the anthranilate synthase complex is proposed in which the trifunctional beta-subunit forms a dimer by the self-association of the InGP synthase-PRA isomerase domains; the G-domain is connected to the InGP synthase-PRA isomerase domain by a relatively disordered region of the peptide chain which, in the alpha 2 beta 2 complex, remains susceptible to proteases; and neither alpha-subunit nor G-domain significantly self-associates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号