首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major cellulase components—four endoglucanases (Endo I, II, III and IV) and one exoglucanase (Exo II)—were isolated from a commercial cellulase preparation derived from Trichoderma viride by a series of chromatographic procedures. The average molecular weights were determined by SDS-polyacrylamide gel electrophoresis. Endos I, III and IV, with Mrs of 52,000, 42,000 and 38,000, respectively, exhibited a more random hydrolytic mode on carboxymethylcellulose (CMC) than Endo II, which has an Mr of 60,000. Endo II showed low activity towards CMC, but out of the four purified endoglucanases this enzyme had the highest specific activity against Avicel. In the hydrolysis of H3PO4-swollen cellulose by Endos I, III and IV, cellobiose was the major product, but equimolar amounts of glucose and cellobiose were formed by Endo II. Exo II, with an Mr of 62,000, released cellobiose as the main product in the hydrolysis of H3PO4-swollen cellulose, but glucose was negligible. The combination of Endo I, II, III or IV with Exo II resulted in a synergistic effect in the degradation of Avicel at various combination ratios of these enzymes; the specific optimum ratio of endoglucanase to exoglucanase was largely dependent upon the random hydrolytic mode of the endoglucanase. On the other hand, adsorption of cellulase components was found apparently to obey the Langmuir isotherm, and the thermodynamic parameter (ΔH) was calculated from the adsorption equilibrium constant (K). The enthalpies of adsorption of the endoglucanases were in the range of −2.6–−7.2 KJmol−1, much smaller than that of Exo II (−19.4 KJmol−1). This suggest that Exo II shows stronger preferential adsorption than endoglucanases, and that the enthalpy of adsorption will be effective in distinguishing endoglucanase from exoglucanase.  相似文献   

2.
Three immunologically and enzymatically distinct endoglucanases of Cellulomonas sp. ATCC 21399 were purified previously. Endoglucanase A and endoglucanase B acted synergistically on microcrystalline cellulose (Avicel), whereas no synergistic action was observed between endoglucanase B or endoglucanase C. Only endoglucanase A was capable of hydrolyzing Avicel when acting alone and this enzyme resulted in "short fiber formation" when acting on Avicel. The end product of hydrolysis of acid swollen Avicel produced by the three endoglucanases was in all cases dominated by cellobiose and showed lower content of glucose and cellotriose. Higher cellodextrins appeared as transient end products. The results indicate that the function of endoglucanase A in the cellulase system of Cellulomonas might be very similar to the function of the cellobiohydrolases of Trichoderma reesei.  相似文献   

3.
Studies on Cellulose Hydrolysis by Acetivibrio cellulolyticus   总被引:3,自引:1,他引:2       下载免费PDF全文
Acetivibrio cellulolyticus extracellular cellulase extensively hydrolyzed crystalline celluloses such as Avicel (FMC Corp., Food and Pharmaceutical Products Div., Philadelphia, Pa.) but only if it was desalted and supplemented with Ca2+. The Ca2+ effect was one of increased enzyme stability in the presence of the ion. Although preincubation of the cellulase complex at 40°C for 5 h without added Ca2+ had a negligible effect on endoglucanase activity or on the subseqent hydrolysis of amorphous cellulose, the capacity of the enzyme to hydrolyze crystalline cellulose was almost completely lost. Adsorption studies showed that 90% of the Avicel-solubilizing component of the total enzyme preparation bound to 2% Avicel at 40°C. Under these conditions, only 15% of the endoglucanase and 25% of the protein present in the enzyme preparation adsorbed to the substrate. The protein profile of the bound enzyme, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was complex and distinctly different from the profile observed for total cellulase preparations. The specific activity of A. cellulolyticus cellulase with respect to Avicel hydrolysis was compared with that of commercially available Trichoderma reesei cellulase.  相似文献   

4.
The extracellular cellulase enzyme system of Clostridium A11 was fractionated by affinity chromatography on Avicel: 80% of the initial carboxymethylcellulase (CMCase) activity was adhered. This cellulase system was a multicomponent aggregate. Several CMCase activities were detected, but the major protein P1 had no detectable activity. Adhered and unadhered cellulases showed CMCase activity with the highest specific activity in Avicel-adhered fraction. However, only afhered fractions could degrade Avicel. Thus, efficiency of the enzymatic hydrolysis of Avicel was related to the cellulase-adhesion capacity. Carboxymethylcellulase and Avicelase activities were studied with the extracellular enzyme system and cloned cellulases. Genomic libraries from Clostridium A11 were constructed with DNA from this Clostridium, and a new gene cel1 was isolated. The gene(s) product(s) from cel1 exhibited CMCase and p-nitrophenylcellobiosidase (pNPCbase) activities. This cloned cellulase adhered to cellulose. Synergism between adhered enzyme system and cloned endoglucanases was observed on Avicel degradation. Conversely, no synergism was observed on CMC hydrolysis. Addition of cloned endoglucanase to cellulase complex led to increase of the Vmax without significant K m variation. Cloned endoglucanases can be added to cellulase complexes to efficiently hydrolyze cellulose.  相似文献   

5.
Wang W  Gao P 《Biodegradation》2002,13(6):383-394
A special low-molecular-weight peptide named Gt factor, was isolated and purified from the extracellular culture of brown-rot fungi Gloeophyllum trabeum via gel filtration chromatography and HPLC. It has been shown to reduce Fe3+ to Fe2+. Electron paramagnetic resonance (EPR) spectroscopy revealed Gt factor was able to drive H2O2 generation via a superoxide anion O2 .- intermediate and mediate the formation of hydroxyl radical HO. in the presence of O2. All the results indicated that Gt factor could oxidize the cellulose, disrupt the inter- and intrahydrogen bonds in cellulose chains by a HO. -involved mechanism. This resulted in depolymerization of the cellulose, which made it accessible for further enzymatic hydrolysis.  相似文献   

6.
Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose (Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein (EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein (EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was 100 microg/ml. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.  相似文献   

7.
Starting from cellulose samples prepared from cotton lintes and differing in lattice type, crystallinity and fibrillar morphology, enzymatic hydrolysis of fibre cellulose has been studied employing complete enzyme systems from Trichoderma, Sporotrichum, Gliocladium and Penicillium as well as isolated endo- and exo-1,4-β-glucanases from Trichoderma reesei and Sporotorichum pulverulentum. The effect of hydrolysis was characterized by content of reducing sugars (RS) and of glucose in the hydrolyzate as well as by DP and X-ray diffraction pattern of the residues. With all the complete enzyme systems investigated about the same order of degradability was found with a series of substrates differing in physical structure. The hydrolysis effect of cellulase from S. pulverulentum proved to be sensitive to the gas atmosphere above the system (N2 or O2), probably due to the interaction of an O2-atmosphere with the activity of the cellubiose-oxydase existent in the system. Isolated endoglucanase from S. pulverulentum and T.reesei still led to a considerable formation of RS and glucose, a corrosion of the fibre surface and a significant descrease in DP. Influence of substrate physical structure was rather small with regard to RS, but still considerable with regard to residue-DP. The effect of isolated exoglucanases depends largely on the chemical structure of the cellobiohydrolase in question, as demonstrated with the two samples “CBH I” and “CBH II” from T. reesei. With CBH I, rather resembling endo-glucanase behaviour, a considerable formation of RS and a significant corrosion of the fibre surface has been observed. On the other hand, only negligibly small amounts of RS were formed by CBH II. Results are discussed with regard to the complex mechanism of cellulase action on fibrous cellulose and with regard to the relevance of different parameters of physical structure of cellulose in connection with enzymatic hydrolysis. A remarkable acceleration of the Cellulose III → Cellulose I lattice transition due to chain fragmentations in the presence of cellulase can be concluded the experiments.  相似文献   

8.
This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H2SO4 with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, β-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 23 central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19–4.81%, w/w) and loadings of enzymes (1.9–38.1 FPU/g bagasse) and Tween 20 (0.0–0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.  相似文献   

9.
The kinetics of the hydrolysis of microcrystalline cellulose (MC) by a Trichoderma reesei cellulase complex and by the individual endoglucanase (pI 4.4–5.2) and cellobiohydrolase (pI 4.0–4.2) has been studied. A flow chart for the enzymatic hydrolysis of the cellulose has been revealed, which formed a basis for a computer simulation of the kinetic regularities observed. As a result of it, the values of the catalytic rate constants for the individual stages of the enzymatic degradation of MC have been calculated. Then, the synergistic behaviour of endoglucanase and cellobiohydrolase in the hydrolysis of MC has been described both quantitatively and graphically. The relative efficiency of the individual stages for the MC hydrolysis in terms of glucose and cellobiose formation for cellulase complexes of various composition has been calculated. It was quantitatively shown that cellobiohydrolase plays the key role in the MC hydrolysis by T. reesei cellulase preparations, because it gives up to 80% glucose and up to 80–90% cellobiose in the presnce of endoglucanase which in turn plays a relatively minor role in a direct formation of both soluble products of the hydrolysis.  相似文献   

10.
The presence of lignin is known to reduce the efficiency of the enzymatic hydrolysis of lignocellulosic raw materials. On the other hand, solubilization of hemicellulose, especially of xylan, is known to enhance the hydrolysis of cellulose. The enzymatic hydrolysis of spruce, recognized among the most challenging lignocellulosic substrates, was studied by commercial and purified enzymes from Trichoderma reesei. Previously, the enzymatic hydrolysis of steam pretreated spruce has been studied mainly by using commercial enzymes and no efforts have been taken to clarify the bottlenecks by using purified enzyme components.Steam-pretreated spruce was hydrolyzed with a mixture of Celluclast and Novozym 188 to obtain a hydrolysis residue, expectedly containing the most resistant components. The pretreated raw material and the hydrolysis residue were analyzed for the enrichment of structural bottlenecks during the hydrolysis. Lignin was removed from these two materials with chlorite delignification method in order to eliminate the limitations caused by lignin. Avicel was used for comparison as a known model substrate. Mixtures of purified enzymes were used to investigate the hydrolysis of the individual carbohydrates: cellulose, glucomannan and xylan in the substrates. The results reveal that factors limiting the hydrolysis are mainly due to the lignin, and to a minor extent by the lack of accessory enzymes. Removal of lignin doubled the hydrolysis degree of the raw material and the residue, and reached close to 100% of the theoretical within 2 days. The presence of xylan seems to limit the hydrolysability, especially of the delignified substrates. The hydrolysis results also revealed significant hemicellulose impurities in the commonly used cellulose model substrate, making it questionable to use Avicel as a model cellulose substrate for hydrolysis experiments.  相似文献   

11.
Acetivibrio cellulolyticus cellulase obtained by the water elution of residual cellulose from the growth medium was compared with the cellulase activity present in culture supernatants. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that water elution released most of the protein bands which adhered to undigested cellulose from the culture medium. The enzyme in the culture supernatant and that eluted from residual cellulose had specific activities for Avicel hydrolysis that were 20- to 40-fold greater than that of Trichoderma reesei cellulase. However, Ca2+ and a reducing agent such as dithiothreitol were required for maximum Avicel hydrolysis rates by these A. cellulolyticus enzyme preparations. The effect of these agents on p-nitrophenyl lactopyranoside hydrolysis suggested that they were required by an exoglucanase component. Supernatant enzyme preparations contained large amounts of carbohydrate which was separated from most of the cellulase protein by phenyl-Sepharose chromatography. Removal of this carbohydrate, which interfered with protein fractionations, allowed for an activity stain analysis of the supernatant enzyme.  相似文献   

12.
Mutational experiments were performed to decrease the protease productivity of Humicola grisea var. thermoidea YH-78 using UV light and N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, no. 140, exhibited higher endoglucanase activity than the parent strain in mold bran culture at 50°C for 4 days. The culture extract rapidly disintegrated filter paper but produced a small amount of reducing sugar. About 30% of total endoglucanase activity in the extract was adsorbed onto Avicel. The electrophoretically homogeneous preparation of Avicel-adsorbable endoglucanase (molecular weight, 128,000) showed intensive filter-paper-disintegrating activity but did not release reducing sugar. The preparation also exhibited a highly synergistic effect with the cellulase preparation from Trichoderma reesei in the hydrolysis of microcrystalline cellulose. This endoglucanase was observed via scanning electron microscopy to disintegrate Avicel fibrils layer by layer from the surface, yielding thin sections with exposed chain ends. A mutant, no. 191, producing higher protease activity and an Avicel-unadsorbable, Avicel-nondisintegrating endoglucanase was isolated. The purified enzyme (molecular weight, 63,000) showed no disintegrating activity on filter paper and Avicel and a less synergistic effect with the T. reesei cellulase in hydrolyzing microcrystalline cellulose than did the former enzyme. Endoglucanase was therefore divided into two types, Avicel disintegrating and Avicel nondisintegrating.  相似文献   

13.
Two endoglucanase-containing fractions were separated from Aspergillus niger cellulase by gel filtration and fast protein liquid chromatofocusing (FPLC). They possessed no ability to bind to or hydrolyze insoluble microcrystalline cellulose (Avicel) but were active toward soluble carboxymethylcellulose. No synergism was observed between Trichoderma reesei cellobiohydrolase I and either endoglucanase from A. niger. These findings may indicate that the role of the endoglucanase component of cellulase in insoluble microcrystalline cellulose hydrolysis is dependent upon its ability to be adsorbed upon the substrate.  相似文献   

14.
The hydrolysis of cellulose into fermentable sugars is a costly and rate-limiting step in the production of biofuels from renewable feedstocks. Developing new cellulase systems capable of increased cellulose hydrolysis rates would reduce biofuel production costs. With this in mind, we screened 55 fungal endoglucanases for their abilities to be expressed at high levels by Aspergillus niger and to hydrolyze amorphous cellulose at rates significantly greater than that obtained with TrCel5A, one of the major endoglucanases in the Trichoderma reesei cellulase system. This screen identified three endoglucanases, Aureobasidium pullulans ApCel5A, Gloeophyllum trabeum GtCel12A and Sporotrichum thermophile StCel5A. We determined that A. niger expressed the three endoglucanases at relatively high levels (≥0.3 g/l) and that the hydrolysis rate of ApCel5A and StCel5A with carboxymethylcellulose 4M as substrate was five and two times greater than the T. reesei Cel5A. The ApCel5A, GtCel12A and StCel5A enzymes also demonstrated significant synergy with Cel7A/CbhI, the major exoglucanase in the T. reesei cellulase system. The three endoglucanases characterized in this study are, therefore, promising candidate endoglucanases for developing new cellulase systems with increased rates of cellulose saccharification.  相似文献   

15.
Effect of hydrogen bond breaker (urea) addition on the enzymatic hydrolysis of Avicel and eucalyptus pretreated by dilute acid (Eu-DA) was investigated. Urea enhanced the enzymatic hydrolysis of Eu-DA at 50 or 30 °C when the concentration of urea was below 60 g/L, while it inhibited the hydrolysis of Avicel. Low concentration urea (<?240 g/L) had little effect on the cellulase spatial structure and its activity. But it decreased cellulase binding to cellulose surface to inhibit the cellulose hydrolysis. Meanwhile, urea obviously prevented the adsorption of cellobiohydrolase I (CBHI) on the lignin in spite of little effect on the adsorption of β-glucosidase (BGL) and two endoglucanases (EGIII and EGV) on lignin. It was proposed that urea enhanced the enzymatic efficiency of Eu-DA by decreasing the cellulase adsorption on lignin surface.  相似文献   

16.
A cellulase assay was developed for the continuous measurement of colored cellulose oligosaccharides (total carbohydrates) released during enzymatic hydrolysis of dyed crystal-line cellulose. Several cellulosic substrates were uniformly dyed by Remalzol brilliant blue R salt without altering their physical properties. Dyed Avicel (6.5%, w/w) was selected as the most representative substrate for the assay procedure. The assay was performed continuously in a simple, thermally controlled apparatus designed for filtration of the reaction mixture via a 5-μm-pore-size nylon filter to retain the crystalline dyed cellulose while spectrophotometrically monitoring the absorbance at 595 nm of the reaction filtrate. Crude supernatant cellulase of Trichoderma viride QM9414 was used to test the assay procedure. The activity of cellulase on dyed Avicel as measured by ΔA595nm correlated directly with the total carbohydrates formed. The initial reaction rate of cellulase solubilizing activity was readily determined with high sensitivity. The continuous assay has utility for the study of cellulase kinetics and for the comparison of activities from different microorganisms.  相似文献   

17.
Endoglucanases are useful tools in the chemical structure analysis of cellulose derivatives. However, knowledge on the endoglucanase selectivity, which is of central importance for data interpretation, is still limited. In this study, new reverse-phase liquid chromatography mass spectrometry (LC–MS) methods were developed to investigate the selectivity of the endoglucanases Cel5A, Cel7B, Cel45A, and Cel74A from the filamentous fungus Trichoderma reesei. The aim was to improve the identification of the regioisomers in the complex mixtures that are obtained after enzymatic hydrolysis. Reduction followed by per-O-methylation was performed in order to improve the separation in reverse-phase LC, increase MS sensitivity, and to facilitate structure analysis by MS/MS of O-carboxymethyl glucose and cellooligosaccharides. The cellulose selective enzymes that were investigated displayed interesting differences in enzyme selectivity on CMC substrates.  相似文献   

18.
Summary Cellobiose oxidase from Phanerochaete chrysosporium was used for continuous monitoring of cellulase action on microcrystalline cellulose (Avicel). Two protocols are described, the parameter monitored being either the decline in electrode potential as ferricyanide is reduced or consumption of dioxygen. Most experiments used a commercial cellulase preparation from Trichoderma reesei and ferricyanide as acceptor. Within 1 min of an addition of cellulase, ferricyanide reduction reached a steady rate. This was converted into a rate of production of substrate for celobiose oxidase, in mol·min–1. Experiments were conducted either with a constant concentration of cellulase and increasing Avicel, or with constant Avicel and increasing cellulase. Kinetic analysis of the experiments with constant cellulase indicated a K mof 4.8 ± 1.0 (g cellulose)·1–1, which was close to the value predicted from binding studies. The specific activity of the cellulase was measured as 375±25 mol·(g cellulase)–1·min–1 in experiments with a high cellulose concentration, but was less than half this value when the cellulose was saturated with cellulase. The maximal rate of cellulose degradation was 9.6±1.3 mol·(g cellulose)–1·min–1.  相似文献   

19.
Addition of L-sorbose, a non-metabolizable non-inducing ketohexose, toTrichoderma reesei cultures growing on cellobiose or Avicel-cellulose lead to increased cellulase activities. Addition of sorbose resulted in a 6-fold increase in cellodextrins (cellotriose, cellotetraose, cellopentaose) concentration on day 3 in cellobiose cultures and 1.3-fold increase in cellodextrins concentrations on day 4 in Avicel cellulose cultures. This increase in intracellular cellodextrins concentration matched closely with the increase in endoglucanase activity at these time points. Treatment of the cell-free extracts with cellulase preparation led to disappearance of the cellodextrins and increase of glucose. These observations suggested a more direct involvement of cellodextrins in cellulase induction process. The cellulases produced in sorbose-supplemented cellobiose medium hydrolyzed microcrystalline cellulose as effectively as the ones produced on Avicel cellulose medium.  相似文献   

20.
Cost-effective release of fermentable sugars from non-food biomass through biomass pretreatment/enzymatic hydrolysis is still the largest obstacle to second-generation biorefineries. Therefore, the hydrolysis performance of 21 bacterial cellulase mixtures containing the glycoside hydrolase family 5 Bacillus subtilis endoglucanase (BsCel5), family 9 Clostridium phytofermentans processive endoglucanase (CpCel9), and family 48 C. phytofermentans cellobiohydrolase (CpCel48) was studied on partially ordered low-accessibility microcrystalline cellulose (Avicel) and disordered high-accessibility regenerated amorphous cellulose (RAC). Faster hydrolysis rates and higher digestibilities were obtained on RAC than on Avicel. The optimal ratios for maximum cellulose digestibility were dynamic for Avicel but nearly fixed for RAC. Processive endoglucanase CpCel9 was the most important for high cellulose digestibility regardless of substrate type. This study provides important information for the construction of a minimal set of bacterial cellulases for the consolidated bioprocessing bacteria, such as Bacillus subtilis, for converting lignocellulose to biocommodities in a single step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号