首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature pea (Pisum sativum L., cv. Meteor) leaves were exposed to two levels of UV-B radiation, with and without supplementary UV-C radiation, during 15 h photoperiods. Simultaneous measurements of CO2 assimilation and modulated chlorophyll fluorescence parameters demonstrated that irradiation with UV-B resulted in decreases in CO2 assimilation that are not accompanied by decreases in the maximum quantum efficiency of photosystem II (PSII) primary photochemistry. Increased exposure to UV-B resulted in a further loss of CO2 assimilation and decreases in the maximum quantum efficiency of PSII primary photochemistry, which were accompanied by a loss of the capacity of thylakoids isolated from the leaves to bind atrazine, thus demonstrating that photodamage to PSII reaction centres had occurred. Addition of UV-C to the UV-B treatments increased markedly the rate of inhibition of photosynthesis, but the relationships between CO2 assimilation and PSII characteristics remained the same, indicating that UV-B and UV-C inhibit leaf photosynthesis by a similar mechanism. It is concluded that PSII is not the primary target site involved in the onset of the inhibition of photosynthesis in pea leaves induced by irradiation with UV-B.  相似文献   

2.
3.
Heterogeneity of leaf CO2 assimilation during photosynthetic induction   总被引:2,自引:2,他引:0  
Spatial mid temporal variations in the distribution of photosynthesis over the leaf area were investigated during induction upon illumination of Rosa rubiginosa L. leaves. Gas exchange and maps of relative photosynthetie electron transport activity computed from chlorophyll fluorescence images were simultaneously monitored. In air, after 15 h of dark adaptation, linear electron transport was heterogeneously distributed over the leaf area during the induction. This patchy induction was explained by asynchronous metabolism activation for the first 10 min of illumination, concomitant asynchronous limitation by intrinsic metabolism and stomatal apertures (10–30 min) and finally by only stomatal limitation beyond 30 min. A brief transition to non-photorespiratory conditions after 20 min of illumination under subsaturating irradiance revealed a marked heterogeneity of CO2 assimilation, presumably as a result of heterogeneous stomatal apertures. The frequency distribution of CO2 assimilation was unimodal. During the induction, heterogeneity gradually decreased and photosynthesis was uniform at steady-state. After 10 min of dark adaptation, heterogeneity of linear electron transport activity occurred during the first 15 min of a second induction and mainly resulted from metabolic limitation.  相似文献   

4.
Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m−2 s−1 photosynthetically active radiation) or with the addition of 8. 9 KJ m−2 day−1 biologically effective UV-B (UV-BBE) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants.  相似文献   

5.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

6.
Maize plants were grown at 14, 18 and 20 °C until the fourth leaf had emerged. Leaves from plants grown at 14 and 18 °C had less chlorophyll than those grown at 20 °C. Maximal extractable ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was decreased at 14 °C compared with 20 °C, but the activation state was highest at 14 °C. Growth at 14 °C increased the abundance (but not the number) of Rubisco breakdown products. Phosphoenolpyruvate carboxylase (PEPC) activity was decreased at 14 °C compared with 20 °C but no chilling-dependent effects on the abundance of the PEPC protein were observed. Maximal extractable NADP-malate dehydrogenase activity increased at 14 °C compared with 20 °C whereas the glutathione pool was similar in leaves from plants grown at both temperatures. Foliar ascorbate and hydrogen peroxide were increased at 14 °C compared with 20 °C. The foliar hydrogen peroxide content was independent of irradiance at both growth temperatures. Plants grown at 14 °C had decreased rates of CO2 fixation together with decreased quantum efficiencies of photosystem (PS) II in the light, although there was no photo-inhibition. Growth at 14 °C decreased the abundance of the D1 protein of PSII and the PSI psaB gene product but the psaA gene product was largely unaffected by growth at low temperatures. The relationships between the photosystems and the co-ordinate regulation of electron transport and CO2 assimilation were maintained in plants grown at 14 °C.  相似文献   

7.
Diffusion of CO2 and other gases inside leaves   总被引:11,自引:2,他引:9  
  相似文献   

8.
The effect of NaCl salinity at concentrations of 43–173 mM in nutrient solution on net gas exchange of attached cowpea [Vigna unguiculata (L.) Walp cv. California Black-eye No. 5 (CB5)] leaves was investigated under both greenhouse and growth chamber conditions.
There was a marked decrease in leaf conductance to water vapor after exposure to low salinity levels and a slighter decrease when salinity levels were higher. The decrease in net assimilation was much more gradual throughout the entire salinity range. The altered responses of net assimilation and leaf conductance to salinity were more evident at a high light intensity. A decrease in intercellular partial CO2 pressure [p(CO2)] was found at the low and intermediate salinity levels but not at the high level. These findings suggest that CO, assimilation was mainly controlled by stomatal conductance and the fixation of CO, might have been increased due to stimulated biochemical activity or to higher chlorophyll concentration per unit leaf area. A decrease in assimilation was already found one day after salinization and pro-ceeded up to 4 days when it was inhibited by 50% at 43 mM NaCl and up to 85% at 173 mM. The decrease in transpiration was larger than the decrease in net assimila-tion, and both were attributed to osmotic stress. Partial recovery was found thereaf-ter and new steady-state rates, in the range of 55 to 100% of the control, were then obtained for salinity levels between 43 and 130 mM. Inhibition of net CO, assimila-tion at this stage was attributed partly to a specific sodium effect and partly to plant water status. A linear relationship between leaf sodium content and net photosynthe-sis was also evident at this stage. Net CO, assimilation recovered more completely than transpiration when salt stress was removed, but at 173 mM NaCl recovery was neglible.  相似文献   

9.
Using a combination of gas-exchange and chlorophyll fluorescence measurements, low apparent CO2/O2 specificity factors (1300 mol mol?1) were estimated for the leaves of two deciduous tree species (Fagus sylvatica and Castanea sativa). These low values contrasted with those estimated for two herbaceous species and were ascribed to a drop in the CO2 mole fraction between the intercellular airspace (Ci) and the catalytic site of Rubisco (Cc) due to internal resistances to CO2 transfer. Cc. was calculated assuming a specificity of Rubisco value of 2560 mol mol?1. The drop between Ci and Cc was used to calculate the internal conductance for CO2 (gi). A good correlation between mean values of net CO2 assimilation rate (A) and gi was observed within a set of data obtained using 13 woody plant species, including our own data. We report that the relative limitation of A, which can be ascribed to internal resistances to CO2 transfer, was 24–30%. High internal resistances to CO2 transfer may explain the low apparent maximal rates of carboxylation and electron transport of some woody plant species calculated from A/Ci curves.  相似文献   

10.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

11.
12.
13.
Plants grown at elevated CO2 often acclimate such that their photosynthetic capacities are reduced relative to ambient CO2-grown plants. Reductions in synthesis of photosynthetic enzymes could result either from reduced photosynthetic gene expression or from reduced availability of nitrogen-containing substrates for enzyme synthesis. Increased carbohydrate concentrations resulting from increased photosynthetic carbon fixation at elevated CO2 concentrations have been suggested to reduce the expression of photosynthetic genes. However, recent studies have also suggested that nitrogen uptake may be depressed by elevated CO2, or at least that it is not increased enough to keep pace with increased carbohydrate production. This response could induce a nitrogen limitation in elevated-CO2 plants that might account for the reduction in photosynthetic enzyme synthesis. If CO2 acclimation were a response to limited nitrogen uptake, the effects of elevated CO2 and limiting nitrogen supply on photosynthesis and nitrogen allocation should be similar. To test this hypothesis we grew non-nodulating soybeans at two levels each of nitrogen and CO2 concentration and measured leaf nitrogen contents, photosynthetic capacities and Rubisco contents. Both low nitrogen and elevated CO2 reduced nitrogen as a percentage of total leaf dry mass but only low nitrogen supply produced significant decreases in nitrogen as a percentage of leaf structural dry mass. The primary effect of elevated CO2 was to increase non-structural carbohydrate storage rather than to decrease nitrogen content. Both low nitrogen supply and elevated CO2 also decreased carboxylation capacity (Vcmax) and Rubisco content per unit leaf area. However, when Vcmax and Rubisco content were expressed per unit nitrogen, low nitrogen supply generally caused them to increase whereas elevated CO2 generally caused them to decrease. Finally, elevated CO2 significantly increased the ratio of RuBP regeneration capacity to Vcmax whereas neither nitrogen supply nor plant age had a significant effect on this parameter. We conclude that reductions in photosynthetic enzyme synthesis in elevated CO2 appear not to result from limited nitrogen supply but instead may result from feedback inhibition by increased carbohydrate contents.  相似文献   

14.
In some plants, stomata are exclusively located in epidermal depressions called crypts. It has been argued that crypts function to reduce transpiration; however, the occurrence of crypts in species from both arid and wet environments suggests that crypts may play another role. The genus Banksia was chosen to examine quantitative relationships between crypt morphology and leaf structural and physiological traits to gain insight into the functional significance of crypts. Crypt resistance to water vapour and CO2 diffusion was calculated by treating crypts as an additional boundary layer partially covering one leaf surface. Gas exchange measurements of polypropylene meshes confirmed the validity of this approach. Stomatal resistance was calculated as leaf resistance minus calculated crypt resistance. Stomata contributed significantly more than crypts to leaf resistance. Crypt depth increased and accounted for an increasing proportion of leaf resistance in species with greater leaf thickness and leaf dry mass per area. All Banksia species examined with leaves thicker than 0.6 mm had their stomata in deep crypts. We propose that crypts function to facilitate CO2 diffusion from the abaxial surface to adaxial palisade cells in thick leaves. This and other possible functions of stomatal crypts, including a role in water use, are discussed.  相似文献   

15.
16.
CO2 responsiveness of plants: a possible link to phloem loading   总被引:5,自引:3,他引:2  
Of the many responses of plants to elevated CO2, accumulation of total non-structural carbohydrates (TNC in % dry weight) in leaves is one of the most consistent. Insufficient sink activity or transport capacity may explain this obvious disparity between CO2 assimilation and carbohydrate dissipation and structural investment. If transport capacity contributes to the problem, phloem loading may be the crucial step. It has been hypothesized that symplastic phloem loading is less efficient than apoplastic phloem loading, and hence plant species using the symplastic pathway and growing under high light and good water supply should accumulate more TNC at any given CO2 level, but particularly under elevated CO2. We tested this hypothesis by carrying out CO2 enrichment experiments with 28 plant species known to belong to groups of contrasting phloem-loading type. Under current ambient CO2 symplastic loaders were found to accumulate 36% TNC compared with only 19% in apoplastic loaders (P=0.0016). CO2 enrichment to 600 μmol mol?1 increased TNC in both groups by the same absolute amount, bringing the mean TNC level to 41% in symplastic loaders (compared to 25% in apoplastic loaders), which may be close to TNC saturation (coupled with chlornplast malfunction). Eight tree species, ranked as symplastic loaders by their minor vein companion cell configuration, showed TNC responses more similar to those of apoplastic herbaceous loaders. Similar results are obtained when TNC is expressed on a unit leaf area basis, since mean specific leaf areas of groups were not significantly different. We conclude that phloem loading has a surprisingly strong effect on leaf tissue composition, and thus may translate into alterations of food webs and ecosystem functioning, particularly under high CO2.  相似文献   

17.
The effects of chilling under low light (9/7 °C, 100 µmol m?2 s?1) on the photosynthetic and antioxidant capacities and subsequent recovery were examined in two (one tolerant and one sensitive) cucumber genotypes. Chilling resulted in an irreversible inhibition of net CO2 assimilation and growth for the sensitive genotype, which was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (Vcmax), the capacity for ribulose‐1,5‐bisphosphate regeneration (Jmax), Rubisco content and activity, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO2 supply or inorganic phosphate limitation. In contrast, CO2 assimilation for the tolerant genotype fully recovered after chill. The chill‐induced decrease in the proportion of electron flux for photosynthetic carbon reduction was mostly compensated by an O2‐dependent alternative electron flux driven by the water–water cycle, especially in the sensitive genotype. Compared with the tolerant genotype, the sensitive genotype after chill showed reduced capacity for scavenging reactive oxygen species and increased accumulation of reactive oxygen species. The balance between O2‐dependent alternative electron flux and the capacity for scavenging reactive oxygen species in response to chill plays a major role in determining the tolerance of cucumber leaves to this stress factor. It is concluded that the water–water cycle operates at high rates when CO2 assimilation is restricted in cucumber leaves subjected to chill and low light conditions.  相似文献   

18.
Photosynthesis, respiration and chlorophyll fluorescence parameters were determined in peach ( Prunus persica L. cv. Dixired) leaves naturally infected by Taphrina deformans (Berk.) Tul. and in healthy leaves (controls), in two successive springs. A drastic decrease in net photosynthesis and an evident increase in respiration in curled leaves were noted. The instantaneous PSII fluorescence yield, with no (F0) and with (F0) quenching component, and steady state fluorescence yield (under actinic light, Fs) were essentially unchanged. Maximal fluorescence in dark-adapted (Fm) and illuminated (F'm) leaves and the corresponding variable fluorescence (Fv and Fv) clearly decreased. The indicators of PSII quantum yield (Fv/Fm) in dark-adapted leaves, and the potential PSII excitation capture efficiency (F'v/F'm) and the quantum yield of PSII (qp [F'v/F'm]) in the light were also significantly lower in curled leaves. Decreasing tendencies were also noted for the PSII photochemical yield (photochemical quenching, qp) and in the energy status of the chloroplast (non-photochemical quenching, qN, and Stern-Vollmer value, NPQ) although the differences were not always significant. In curled leaves the main alteration documented is the imbalance between the drastic inhibition of CO2 fixation and the moderate decrease in photochemical reactions (i.e. Fv/Fm and ΔF/F'm), indicating changes in the energy flux.  相似文献   

19.
We present evidence that plant growth at elevated atmospheric CO2 increases the high‐temperature tolerance of photosynthesis in a wide variety of plant species under both greenhouse and field conditions. We grew plants at ambient CO2 (~ 360 μ mol mol ? 1) and elevated CO2 (550–1000 μ mol mol ? 1) in three separate growth facilities, including the Nevada Desert Free‐Air Carbon Dioxide Enrichment (FACE) facility. Excised leaves from both the ambient and elevated CO2 treatments were exposed to temperatures ranging from 28 to 48 °C. In more than half the species examined (4 of 7, 3 of 5, and 3 of 5 species in the three facilities), leaves from elevated CO2‐grown plants maintained PSII efficiency (Fv/Fm) to significantly higher temperatures than ambient‐grown leaves. This enhanced PSII thermotolerance was found in both woody and herbaceous species and in both monocots and dicots. Detailed experiments conducted with Cucumis sativus showed that the greater Fv/Fm in elevated versus ambient CO2‐grown leaves following heat stress was due to both a higher Fm and a lower Fo, and that Fv/Fm differences between elevated and ambient CO2‐grown leaves persisted for at least 20 h following heat shock. Cucumis sativus leaves from elevated CO2‐grown plants had a critical temperature for the rapid rise in Fo that averaged 2·9 °C higher than leaves from ambient CO2‐grown plants, and maintained a higher maximal rate of net CO2 assimilation following heat shock. Given that photosynthesis is considered to be the physiological process most sensitive to high‐temperature damage and that rising atmospheric CO2 content will drive temperature increases in many already stressful environments, this CO2‐induced increase in plant high‐temperature tolerance may have a substantial impact on both the productivity and distribution of many plant species in the 21st century.  相似文献   

20.
1. The affinity of photosynthesis for CO2 is calculated here as the initial slope of net-photosynthetic rate against concentration of CO2. The affinity for CO2 for pairs of freshwater macrophytes with similar leaf morphology but able or unable to use HCO3 as a carbon source was compared.
2. Species restricted to CO2 had a higher affinity for CO2 than species that were also able to use HCO3 when rates were expressed on the basis of area, dry mass and content of chlorophyll a .
3. Published values for the affinity for CO2 and the concentration of CO2 which half-saturated rate of photosynthesis were compiled and compared. Despite a large range of values, affinity for CO2 was greater for species restricted to CO2 than for those also able to use HCO3 and statistically different when the slope was expressed on the basis of dry mass and chlorophyll a content.
4. The difference in affinity is consistent with predicted benefits of a high permeability to CO2 for species relying on passive diffusion of CO2 and a lower permeability for species able to use HCO3 in order to reduce efflux of CO2 from a high internal concentration generated by active transport.
5. The implications of the different affinities are discussed in terms of species distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号