首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forskolin is thought to be a highly specific activator of adenyl cyclase. However, when applied to rat pheochromocytoma (PC12) cells at concentrations of 1 microM or higher it caused an immediate, concentration-dependent inhibition of carbachol-stimulated uptake of 86Rb+ through the nicotinic receptors, which did not appear to be related to activation of adenyl cyclase. The inhibition of receptor activation occurred instantaneously whereas cellular cAMP content did not increase for a measureable period of time. Normal receptor function was recovered rapidly upon removal of forskolin. Additional evidence that this effect of forskolin was not related to cAMP was obtained when 1,9-dideoxyforskolin (an analog of forskolin which does not activate adenyl cyclase) also caused a rapid, concentration-dependent, rapidly reversible inhibition of receptor-mediated influx of 86Rb+ into the cells. An examination of the effect of forskolin on 86Rb+ uptake at various concentrations of carbachol showed that forskolin was not acting by competing with carbachol for the receptor activation site. Given the lipophilic nature of forskolin, it probably acts like a general anesthetic to perturb the plasma membrane lipid structure and alter the function of the nicotinic acetylcholine receptors, possibly by increasing the rate of closure of open channels.  相似文献   

2.
An assay for the increase in potassium permeability mediated by muscarinic acetylcholine receptors (mAChR) in cultured cardiac cells is described, using the K+ ion substitute 86Rb+ as the tracer ion. Cardiac cells accumulate 86Rb+ from the extracellular medium in a Na+/K+ ATPase-dependent manner. Subsequent efflux of 86Rb+ in the absence and presence of muscarinic agonists follows kinetics similar to those previously reported for 42K+. The mAChR agonist carbamylcholine (carbachol) stimulated 86Rb+ efflux with an EC50 of 50 nM. The half-time for efflux is reduced by greater than 40% at maximally effective concentrations of agonist. Stimulation of 86Rb+ efflux by carbachol is blocked by the mAChR antagonist atropine with an IC50 of 15 nM. The stimulation of 86Rb+ efflux by carbachol is not affected by the presence of the Na+/K+ ATPase inhibitor ouabain. This assay provides a method for quantitating the mAChR-mediated increase in K+ permeability in cardiac cells without the use of 42K+.  相似文献   

3.
Activation of muscarinic acetylcholine receptors (mAChRs) causes the rapid release of Ca2+ from intracellular stores and a sustained influx of external Ca2+ in PC12D cells, a subline of the widely studied cell line PC12. Release of Ca2+ from intracellular stores and a sustained influx of Ca2+ are also observed following exposure to thapsigargin, a sesquiterpene lactone that depletes intracellular Ca2+ pools by irreversibly inhibiting the Ca2+ pump of the endoplasmic reticulum. In this study, we show that carbachol and thapsigargin empty the same intracellular Ca2+ stores, and that these stores are a subset of intracellular stores depleted by the Ca2+ ionophore ionomycin. Intracellular Ca2+ stores remain depleted during continuous stimulation of mAChR with carbachol in medium containing 2 mM extracellular Ca2+, but rapidly refill following inhibition of mAChRs with atropine. Addition of atropine to carbachol-stimulated cells causes intracellular Ca2+ levels to return to baseline levels in two steps: a rapid decrease that correlates with the reuptake of Ca2+ into internal stores and a delayed decrease that correlates with the inhibition of a Mn2+-permeable Ca2+ channel. Several lines of evidence suggest that carbachol and thapsigargin stimulate Ca2+ influx by a common mechanism: (i) pretreatment with thapsigargin occludes atropine-mediated inhibition of Ca2+ influx, (ii) carbachol and thapsigargin applied individually or together are equally efficient at stimulating the influx of Mn2+, and (iii) identical rates of Ca2+ influx are observed when Ca2+ is added to cells pretreated with carbachol, thapsigargin, or both agents in the absence of extracellular Ca2+. Taken together, these data suggest that the sustained influx of extracellular Ca2+ observed following activation of mAChRs in PC12D cells is mediated primarily by activation of a Mn2+-permeable, Ca2+ store-operated Ca2+ channel.  相似文献   

4.
In this paper we report that stimulation of mAChRs in PC12D cells activates Ca2+ channels that are regulated independently of intracellular Ca2+ stores. In nominally Ca2+-free medium, exposure of PC12D cells to carbachol stimulates a robust influx of Ba2+, a Ca2+ substitute. This influx is blocked by atropine, but not by inhibitors of the nicotinic acetylcholine receptor or L-, N-, or T-type voltage-regulated Ca2+ channels. By contrast, depletion of intracellular Ca2+ stores with thapsigargin only weakly stimulates Ba2+ influx. Unlike store-operated Ca2+ channels (SOCCs), which close only after intracellular Ca2+ stores refill, channels mediating carbachol-stimulated Ba2+ influx rapidly close following the inactivation of mAChRs with atropine. Ba2+ influx is inhibited by extracellular Ca2+, by the Ca2+ channel blocker SKF-96365, and by activation of protein kinase C (PKC). Exogenous expression of antisense RNA encoding the rat canonical-transient receptor potential Ca2+ channel subtype 6 (TRPC6) or the N-terminal domain of TRPC6 blocks carbachol-stimulated Ba2+ influx in PC12D cells. Expression of TRPC6 antisense RNA or the TRPC6 N-terminal domain also blocks Ba2+ influx stimulated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a diacylglycerol analog previously shown to activate exogenously expressed TRPC6 channels. These data show that mAChRs in PC12D cells activate endogenous Ca2+ channels that are regulated independently of Ca2+ stores and require the expression of TRPC6.  相似文献   

5.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   

6.
Recent findings suggest that astrocytes respond to neuronally released neurotransmitters with Ca2+ elevations. These Ca2+ elevations may trigger astrocytes to release glutamate, affecting neuronal activity. Neuronal activity is also affected by modulatory neurotransmitters that stimulate G protein-coupled receptors. These neurotransmitters, including acetylcholine and histamine, might affect neuronal activity by triggering Ca2+-dependent release of neurotransmitters from astrocytes. However, there is no physiological evidence for histaminergic or cholinergic receptors on astrocytes in situ. We asked whether astrocytes have these receptors by imaging Ca2+-sensitive dyes sequestered by astrocytes in hippocampal slices. Our results show that immunocytochemically identified astrocytes respond to carbachol and histamine with increases in intracellular free Ca2+ concentration. The H1 histamine receptor antagonist chlorpheniramine inhibited responses to histamine. Similarly, atropine and the M1-selective muscarinic receptor antagonist pirenzepine inhibited carbachol-elicited responses. Astrocyte responses to histamine and carbachol were compared with responses elicited by alpha1-adrenergic and metabotropic glutamate receptor agonists. Individual astrocytes responded to different subsets of receptor agonists. Ca2+ oscillations were the prevalent response pattern only with metabotropic glutamate receptor stimulation. Finally, functional alpha1-adrenergic receptors and muscarinic receptors were not detected before postnatal day 8. Our data show that astrocytes have acetylcholine and histamine receptors coupled to Ca2+. Given that Ca2+ elevations in astrocytes trigger neurotransmitter release, it is possible that these astrocyte receptors modulate neuronal activity.  相似文献   

7.
The secretion of catecholamines and ATP induced by cholinergic agonists and its dependence on extracellular Ca2+ were studied in cultured porcine adrenal chromaffin cells. Both nicotine and methacholine (a selective muscarinic agonist) induced secretion and increases in cytosolic free Ca2+ concentration ([Ca2+]in), although the activation of nicotinic receptors produced responses that were larger than those produced by activation of muscarinic receptors. The secretion and the increase in [Ca2+]in evoked by nicotine were completely dependent on extracellular Ca2+ and were blocked by prior depolarization of the cells with high extracellular K+ levels. In addition, nicotine induced significant 45Ca2+ influx. In contrast, the secretion and the increase in [Ca2+]in evoked by methacholine were partially dependent on extracellular Ca2+; methacholine also induced 45Ca2+ influx. Prior depolarization of the cells with high extracellular K+ levels did not block methacholine-induced secretion. In general, nicotinic responses were mediated by Ca2+ influx through voltage-dependent pathways. In contrast, muscarinic responses were dependent on both Ca2+ influx through an unknown mechanism that could not be inactivated by high K+ concentration-induced depolarization and presumably also intracellular Ca2+ mobilization.  相似文献   

8.
The effects of elevated intracellular cyclic AMP on the release of neurotransmitters was studied using the clonal pheochromocytoma cell line, PC12, and forskolin, a direct activator of adenylate cyclase. Intracellular cyclic AMP concentrations ranging from 8 to 400 times basal levels were achieved with 0.1 to 100 uM forskolin. Unstimulated release of neurotransmitters was unchanged by any concentration of forskolin. However, K+-stimulated release of both norepinephrine (NE) and acetylcholine was enhanced by 0.1 to 10 uM forskolin. Release of NE elicited by depolarization with carbachol and veratridine also was enhanced by 1 uM forskolin. Enhancement of release was reversed by higher concentrations of forskolin, especially in the presence of a phosphodiesterase inhibitor (RO 20-1724) which caused very large increases in cyclic AMP content. The enhancement of transmitter release from the PC12 cells occurred without concomitant changes in agonist-stimulated ion flux through the acetylcholine receptor ion channel, or in depolarization-dependent uptake of 45Ca++. Thus, increasing the cyclic AMP content of PC12 cells fails to initiate neurosecretion but appears to facilitate some element in the secretion process subsequent to Ca++ influx.  相似文献   

9.
We have used pheochromocytoma cells, clone PC12, as a model system for studying the effects of adenosine on neurosecretion. Exposure of the cells to adenosine or 2-chloroadenosine caused immediate activation of adenylate cyclase, increases in cellular cyclic AMP content, and inhibition of SAM-dependent phospholipid N-methylation and protein carboxymethylation. However, the effects on methylation were only observed with concentrations of adenosine 100 times greater than those that elevated cyclic AMP. Exposure of the cells to adenosine and 2-chloroadenosine did not alter the release of [3H]norepinephrine [(3H]NE) in the absence of depolarization. However, depolarization-dependent release of [3H]NE was markedly elevated by short (1-20 min) pretreatments with adenosine or 2-chloroadenosine. The enhancement of release was observed irrespective of the nature of the depolarizing stimulus (elevated K+, carbamylcholine, or veratridine). Release of [3H]acetylcholine in response to elevated K+ also was increased by adenosine pretreatment. These effects of adenosine and 2-chloroadenosine on neurotransmitter release closely paralleled elevation of cellular cyclic AMP but not inhibition of methylation. Taken together, the results show that adenosine, probably acting through adenosine receptors coupled to stimulation of adenylate cyclase, is able to modulate the neurosecretory process in PC12 cells. Furthermore, the enhancement of release occurred even though the extent of depolarization (measured as 86Rb+ flux through the acetylcholine receptor channel) and the amount of 45Ca2+ which entered upon depolarization were unchanged. Therefore, the enhancement of release produced by elevated cyclic AMP appeared to reflect increased efficiency of the stimulus-secretion coupling process.  相似文献   

10.
Uptake of 86Rb was measured in dispersed rat exorbital lacrimal gland cells. The uptake was inhibited by ouabain (0.9 mM) and stimulated by carbachol (10?5M). In the presence of quabain, in the absence of Ca, or in the presence of decreased extracellular Na, carbachol failed to stimulate 86Rb uptake. Cellular concentrations of Na and K were also determined. Cells treated with carbachol had elevated Na content and decreased K content. Omission of external Ca prevented both the K loss and Na gain. Decreasing extracellular Na prevented the Na gain but only partially inhibited the loss of cellular K. The conclusions to be reached from these data are: (1) in the resting lacrimal cell, a quabain sensitive pump actively maintains the intracellular concentration of K high and that of Na low, (2) carbachol acts, through Ca, to increase the passive membrane permeability to Na and K as well as the activity of the pump, and (3) the stimulus for the activation of the pump may be a rise in the intracellular concentration of Na.  相似文献   

11.
Aggregation of immunoglobulin E-receptor complexes on the surface of rat basophilic leukemia cells stimulates an increase in plasma membrane K+ permeability that is monitored as an increase in the rate of efflux of preloaded 86Rb+. A major component of this stimulated 86Rb+ efflux appears to be due to a Ca(2+)-activated K+ channel because it is inhibited by quinidine in parallel with the inhibition of degranulation and membrane potential repolarization, it is blocked by 0.1 mM La3+, and it is dependent on external Ca2+. Depolarization of the plasma membrane by carbonyl cyanide 3-chlorophenylhydrazone inhibits stimulated Ca2+ influx and prevents antigen-induced 86Rb+ efflux, and increased external Ca2+ partially restores 86Rb+ efflux under these conditions. In addition, potentiation of antigen-stimulated Ca2+ influx by pretreatment with cholera toxin increases the initial rate of stimulated 86Rb+ efflux. Another component of antigen-stimulated K+ efflux appears to be mediated by a guanine nucleotide-binding protein because pretreatment of rat basophilic leukemia cells with pertussis toxin decreases the initial rate of antigen-stimulated 86Rb+ efflux to 40% of that for the untreated cells. Stimulated 86Rb+ efflux is also observed when ionomycin is used to increase cytoplasmic Ca2+ and to trigger membrane depolarization. The efflux stimulated by ionomycin is inhibited by quinidine but not by pertussis toxin pretreatment; thus, it appears to occur through the Ca(2+)-activated K+ efflux pathway. It is proposed that these K+ efflux pathways serve to sustain the Ca2+ influx that is necessary for receptor-mediated triggering of cellular degranulation.  相似文献   

12.
Muscarinic receptor activation of phosphoinositide phospholipase C (PLC) has been examined in rat cerebellar granule cells under conditions that modify intracellular Ca2+ stores. Exposure of cells to medium devoid of Ca2+ for various times reduced carbachol stimulation of PLC with a substantial loss (88%) seen at 30 min. A progressive recovery of responses was observed following the reexposure of cells to Ca2+-containing medium (1.3 mM). However, these changes did not appear to result exclusively from changes in the cytosolic Ca2+ concentration ([Ca2+]i), which decreased to a lower steady level (approximately 25 nM decrease in 1-3 min after extracellular omission) and rapidly returned (within 1 min) to control values when extracellular Ca2+ was restored. Only after loading of the intracellular Ca2+ stores through a transient 1-min depolarization of cerebellar granule cells with 40 mM KCl, followed by washing in nondepolarizing buffer, was carbachol able to mobilize intracellular Ca2+. However, the same treatment resulted in an 80% enhancement of carbachol activation of PLC. In other experiments, partial depletion of the Ca2+ stores by pretreatment of cells with thapsigargin and caffeine resulted in an inhibition (18 and 52%, respectively) of the PLC response. Furthermore, chelation of cytosolic Ca2+ with BAPTA/AM did not influence muscarinic activation of PLC in either the control or predepolarized cells. These conditions, however, inhibited both the increase in [Ca2+]i and the PLC activation elicited by 40 mM KCl and abolished carbachol-induced intracellular Ca2+ release in predepolarized cells. Overall, these results suggest that muscarinic receptor activation of PLC in cerebellar granule cells can be modulated by changes in the loading state of the Ca2+ stores.  相似文献   

13.
The characteristics of 86Rb+ fluxes through conductive channels in basolateral-membrane vesicles isolated from pars convoluta of rabbit proximal tubule were investigated. In KCl loaded vesicles a transient accumulation of 86Rb+ was observed which was inhibited by BaCl2. The accumulation was driven by an electrical diffusion potential, as shown in experiments using membrane vesicles loaded with Li2SO4 and an outwardly directed Li+ gradient established with a Li(+)-ionophore. The vesicles containing the channel showed a cation selectivity with the order K+ = Rb+ much greater than Li+ greater than or equal to Na+ greater than choline+. The 86Rb+ flux was dependent on intravesicular Ca2+. Increasing concentrations of Ca2+ gradually decreased the 86Rb+ uptake.  相似文献   

14.
The significance of intracellular Na+ concentration in catecholamine secretion of cultured bovine adrenal chromaffin cells was investigated using the monovalent carboxylic ionophore monensin. This ionophore, which is known to mediate a one-for-one exchange of intracellular K+ for extracellular Na+, induces a slow, prolonged release of catecholamines which, at 6 h, amounts of 75-90% of the total catecholamines; carbachol induces a rapid pulse of catecholamine secretion of 25-35%. Although secretory granule numbers appear to be qualitatively reduced after carbachol, multiple carbachol, or Ba2+ stimulation, overall granule distribution remains similar to that in untreated cells. Monensin-stimulated catecholamine release requires extracellular Na+ but not Ca2+ whereas carbachol-stimulated catecholamine release requires extracellular Ca2+ and is partially dependent on extracellular Na+. Despite its high selectivity for monovalent ions, monensin is considerably more effective in promoting catecholamine secretion than the divalent ionophores, A23187 and ionomycin, which mediate a more direct entry of extracellular Ca2+ into the cell. We propose that the monensin-stimulated increase in intracellular Na+ levels causes an increase in the availability of intracellular Ca2+ which, in turn, stimulates exocytosis. This hypothesis is supported by the comparable stimulation of catecholamine release by ouabain which inhibits the outwardly directed Na+ pump and thus permits intracellular Na+ to accumulate. The relative magnitudes of the secretion elicited by monensin, carbachol, and the calcium ionophores, are most consistent with the hypothesis that, under normal physiological conditions, Na+ acts by decreasing the propensity of Ca2+- sequestering sites to bind the Ca2+ that enters the cell as a result of acetylcholine stimulation.  相似文献   

15.
Undifferentiated PC12 cell produce high levels of apamin receptors (measured with 125I-apamin) after 7 days in culture. These levels are at least 50 times higher than those found in other cellular types which are also known to have apamin receptors and apamin-sensitive Ca2+-activated K+ channels in their membranes. Treatment of undifferentiated PC12 cells with nerve growth factor maintains these cells in a state having a low level (10 times less after 7 days of culture) of apamin receptors. Ca2+ injection into PC12 cells with the calcium ionophore A23187 has been used to monitor the activity of the Ca2+-activated K+ channel following 86Rb+ efflux. A large component of this Ca2+-activated 86Rb+ efflux is inhibited by apamin. Half-maximum inhibition by apamin of both 86Rb+ efflux and 125I-apamin binding was observed at 240 pM apamin. Another component of 86Rb+ efflux is due to another type of Ca2+-activated K+ channel which is resistant to apamin and sensitive to tetraethylammonium. The Ca2+ channel activator Bay K8644 also triggers an apamin-sensitive Ca2+-dependent 86Rb+ efflux. Bay K8644 has been used to analyze the internal Ca2+ concentration dependence of the apamin-sensitive channel activity. Under normal conditions, the internal Ca2+ concentration is 109 +/- 17 nM, and the apamin-sensitive channel is not activated. The channel is fully activated at an internal Ca2+ concentration of 320 +/- 20 nM.  相似文献   

16.
Effects of Erythropoietin on Neuronal Activity   总被引:28,自引:0,他引:28  
Recently, erythropoietin (EPO) receptors and synthesis of EPO have been identified in the brain. To clarify the effects of EPO on neuronal cells, we investigated the effects of EPO on Ca2+ uptake, intracellular Ca2+ concentration, membrane potential, cell survival, release and biosynthesis of dopamine, and nitric oxide (NO) production in differentiated PC12 cells, which possess EPO receptors. EPO (10(-12)-10(-10) M) increased 45Ca2+ uptake and intracellular Ca2+ concentration in PC12 cells in a dose-related manner; these increases were inhibited by nicardipine (1 microM) or anti-EPO antibody (1:100 dilution). EPO induced membrane depolarization in PC12 cells. After a 5-day culture without serum and nerve growth factor (NGF), viable cell number decreased to 50% of that of the control cells cultured with serum and NGF. EPO (10(-13)-10(-10) M) increased the number of viable cells cultured without serum and NGF; this increase was blunted by nicardipine or anti-EPO antibody. Incubation with EPO (10(-13)-10(-10) M) stimulated mitogen-activated protein kinase activity in PC12 cells. EPO (10(-13)-10(-10) M) increased dopamine release from PC12 cells and tyrosine hydroxylase activity; these increases were sensitive to nicardipine or anti-EPO antibody. Following a 4-h incubation with EPO (10(-14)-10(-10) M), NO production was increased, which was blunted by nicardipine and anti-EPO antibody. In contrast, maximal NO synthase activity was not changed by EPO. These results suggest that EPO stimulates neuronal function and viability via activation of Ca2+ channels.  相似文献   

17.
Several types of transmembrane receptors regulate cellular responses through the activation of phospholipase C-mediated Ca2+ release from intracellular stores. In non-excitable cells, the initial Ca2+ release is typically followed by a prolonged Ca2+ influx phase that is important for the regulation of several Ca2+-sensitive responses. Here we describe an agonist concentration-dependent mechanism by which m3 muscarinic acetylcholine receptors (mAChRs) differentially regulate the magnitude of the release and influx components of a Ca2+ response. In transfected Chinese hamster ovary cells expressing m3 mAChRs, doses of the muscarinic agonist carbachol ranging from 100 nM to 1 mM evoked Ca2+ release responses of increasing magnitude; maximal Ca2+ release was elicited by the highest carbachol concentration. In contrast, Ca2+ influx was maximal when m3 mAChRs were activated by moderate doses (1-10 microM) of carbachol, but substantially reduced at higher agonist concentrations. Manipulation of the membrane potential revealed that the carbachol-induced Ca2+ influx phase was diminished at depolarized potentials. Importantly, carbachol doses above 10 microM were found to couple m3 mAChRs to the activation of an inward, monovalent cation current resulting in depolarization of the cell membrane and a selective decrease in the influx, but not release, component of the Ca2+ response. These studies demonstrate, in one experimental system, a mechanism by which a single subtype of G-protein-coupled receptor can utilize the information encoded in the concentration of an agonist to generate distinct intracellular Ca2+ signals.  相似文献   

18.
The excitatory amino acid agonists kainate, N-methyl-D-aspartate (NMDA), and quisqualate inhibited ligand-stimulated phosphoinositide hydrolysis in rat cortical slices. The NMDA channel blocker MK-801 antagonized the inhibition by NMDA but had no effect on the inhibition due to kainate or quisqualate. The antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the effects of quisqualate and kainate but not the effect of NMDA. These data indicate that activation of the NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate types of ionotropic receptors has the same effect. In membranes prepared from cortical slices, there was no inhibition of carbachol-stimulated phosphoinositidase C activity by excitatory amino acids, suggesting that excitatory amino acids indirectly affect carbachol-stimulated phosphoinositide hydrolysis. The inhibition by excitatory amino acids of carbachol-stimulated phosphoinositide breakdown was dependent on extracellular Mg2+ and was abolished by procedures that increase intracellular Ca2+. Veratridine inhibition of carbachol-stimulated phosphoinositide hydrolysis was reversed by ouabain but not by other procedures that increase intracellular Ca2+. In contrast to excitatory amino acids, veratridine potentiated carbachol-stimulated phosphoinositide breakdown in the presence of 10 mM extracellular Mg2+. These data suggest that excitatory amino acids inhibit carbachol-stimulated phosphoinositide breakdown in rat cortex by lowering intracellular Ca2+ through a mechanism dependent on extracellular Mg2+.  相似文献   

19.
The characteristics of 86Rb+ fluxes through conductive channels in basolateral-membrane vesicles isolated from pars recta of rabbit kidney proximal tubule were investigated. In RbCl-, KCl- and NaCl-loaded vesicles a transient and almost equal accumulation of 86Rb+ was observed. The uptakes of 86Rb+ were inhibited to the same extent by 10 mM-BaCl2 in all loadings. The accumulation was driven by an electrical diffusion potential. The 86Rb+ flux was dependent on intravesicular Ca2+. Increasing concentrations of Ca2+ gradually decreased the 86Rb+ uptake. At 10 microM-Ca2+ the radioisotope flux was below 20% of control. The vesicles containing the channel showed very low selectivity among the univalent cations K+, Rb+, Li+, Na+ and choline+.  相似文献   

20.
In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca2+. Qualitatively similar changes are observed upon the application of carbachol, an activator of acetylcholine receptor-coupled cation channels. Using multibarrelled ion-selective microelectrodes it was demonstrated that kainate, but not carbachol, caused additional increases in the intracellular free Mg2+ concentration ([Mg2+]i). Experiments were designed to investigate whether this kainate-induced [Mg2+]i increase was due to a direct Mg2+ influx through the AMPA/kainate receptor-coupled cation channels or a secondary effect due to the depolarization or the ionic changes. It was found that: (a) Similar [Mg2+]i increases were evoked by the application of glutamate or aspartate. (b) All kainate-induced effects were inhibited by the glutamatergic antagonist DNQX. (c) The magnitude of the [Mg2+]i increases depended on the extracellular Mg2+ concentration. (d) A reduction of the extracellular Ca2+ concentration increased kainate-induced [Mg2+]i increases, excluding possible Ca2+ interference at the Mg2+-selective microelectrode or at intracellular buffer sites. (e) Neither depolarizations evoked by the application of 30 mM K+, nor [Na+]i increases induced by the inhibition of the Na+/K+ ATPase caused comparable [Mg2+]i increases. (f) Inhibitors of voltage-dependent Ca2+ channels did not affect the kainate-induced [Mg2+]i increases. Moreover, previous experiments had already shown that intracellular acidification evoked by the application of 20 mM propionate did not cause changes in [Mg2+]i. The results indicate that kainate-induced [Mg2+]i increases in leech Retzius neurones are due to an influx of extracellular Mg2+ through the AMPA/kainate receptor-coupled cation channel. Mg2+ may thus act as an intracellular signal to distinguish between glutamatergic and cholinergic activation of leech Retzius neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号