首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar protein was consistently phosphorylated in an in vitro assay in flagella isolated from nonadhering mt+ and mt- gametes, but not in flagella isolated from mt+ and mt- gametes that had been adhering for 1 min. Although the 48-kDa protein was present in the flagella isolated from adhering gametes, we demonstrate that its protein kinase was inactivated by flagellar adhesion. Immunoblot analysis and inhibitor studies indicate that the 48-kDa protein in nonadhering gametes is phosphorylated by a protein tyrosine kinase. In vivo experiments showing that the protein tyrosine phosphatase inhibitor sodium orthovanadate inhibits fertilization suggest that protein dephosphorylation may be required for signal transduction. The 48-kDa protein and its protein kinase may be among the first elements of a novel signalling pathway that couples interaction of flagellar adhesion molecules to gamete activation.  相似文献   

2.
Gametes of opposite mating type (mt + and mt -) of the green alga Chlamydomonas eugametos agglutinate via their flagella as a prelude to sexual fusion. To quantitate sexual agglutination, an in vitro assay has been developed using 35S-labeled flagella and the isolated mt -agglutination factor. It is shown that not only isolated flagella, but also the mt -agglutination factor rapidly bind to the flagella of intact gametes of the opposite mating type. This confirms the role of the mt -agglutination factor in determining the sexual agglutinability of mt -gametes. As a function of binding, the agglutinative power of the flagella of both mating types is destroyed by a temperature-sensitive process. Likewise, the mt -agglutination factor can be completely inactivated.Abbreviations Mt +/- mating type plus or minus - PAS periodic-acid Schiff-reagent - Hepes 4-(2-hydroxyethyl)-1-piperazineethansulfonic acid - HMC buffer Hepes buffer (10 mM. pH 7.2, containing 1 mM MgCl2 and 1 mM CaCl2)  相似文献   

3.
Isolated flagella from gametes of both mating types (mt+ and mt-) of Chlamydomonas reinhardii were suspended in buffer containing 7% sucrose. After mixing instantaneous agglutination occurred, giving rise to clumps which seem to be stable for at least 24 h. Control experiments show that no aggregates are formed when gametic flagella of one mating type are mixed with flagella prepared from vegetative cells of the other mating type.This in vitro agglutination is inhibited by a number of salt solutions in the same concentration range in which the agglutination of live gametes is affected. Moreover the clumps of flagella tend to disaggregate completely when the salt solutions are added after agglutination has occurred, or by treatment with trypsin. These observations suggest that the in vitro agglutination of isolated gametic flagella indeed reflects their physiological role in the recognition step of the mating process, which appears to be possible without participation of live gametes.We have also investigated the activity of glycosyl transferases on isolated gametic flagella before and during the in vitro agglutination reaction. As there was no detectable increase in the activity of glycosyl transferases, our results do not favour the hypothesis that these enzymes are involved in the primary step of recognition between gametic flagella.Dedicated to Prof. Dr. Otto Kandler on the occasion of his 60th birthday  相似文献   

4.
Flagellar sexual agglutinins are responsible for the primary recognition and adhesion events of mating in Chlamydomonas reinhardi which culminate in zygotic union of plus and minus gametes. Recent studies in this laboratory have shown the plus agglutinin to be an extremely large (>106 D) and asymmetric glycoprotein containing a high proportion of hydroxyproline and serine residues [14, 27, 28]. This paper reports an improved method for in vitro investigations of the adhesive nature of this molecule. Purified agglutinin is covalently attached to an insoluble (Affi-gel 15 agarose bead) support and shown to retain potent agglutination activity when presented to living minus gametes, which rapidly and extensively adhere to the coated bead surface by their flagella. The specificity of the response is documented by the lack of interaction of plus gametes with the immobilized plus agglutinin (IA+). Using this simple yet sensitive bioassay, we have subjected IA+ beads to various enzymatic, chemical and physical treatments and assessed the effects on agglutinin activity. These studies reveal that Chlamydomonas plus agglutinin is sensitive to thermolysin or trypsin digestion, alkaline borohydride reduction, periodate oxidation, thiol reduction and heating at 65 °C, but unaffected by treatment with chymotrypsin, endo- or exoglycosidases, or incubation with isolated minus agglutinin. The implications of these results for agglutinin structure and possible functional interactions in initial recognition/adhesion events are discussed.  相似文献   

5.
Mating between gametes of the biflagellated unicellular green alga Chlamydomonas reinhardi consists of several events culminating in zygote formation. Initially, the cells agglutinate by their flagellar tips. This is followed by pairing, cell wall loss, and cell fusion. Here we report on the relationship between the length of the flagellum, and the cells' ability to agglutinate, undergo cell wall loss (as measured by medium carbohydrate accumulation), and to form zygotes. We found that deflagellated gametes regained the potential for sexual agglutination when the flagella had regenerated to less than 3 μm (compared to the full length flagella of approx. 11 μm), while medium carbohydrate appeared only after the flagella had reached an average length greater than 5 μm. By inhibiting flagellar regeneration with cycloheximide or colchicine, we determined that carbohydrate release is related to the length of the flagellum and not to the time after deflagellation. A flagellar length dependence similar to that of carbohydrate release was also observed when we measured the relationship between the gametes' ability to fuse and flagellar length.  相似文献   

6.
Summary Sex-specific agglutination in gametes ofChlamydomonas eugametos was carried out with dead partner cells (killed by glutaraldehyde, formaldehyde or OsO4), with isolated flagella, flagellar appendages and isoagglutinins derived from cell-free culture medium. The activation of the plasma papilla in agglutinated cells was studied by scanning electron microscopy in relation to the agglutinative properties of the materials tested. The results reveal differences in agglutination and papilla activation between gametes of both mating types. They also indicate that papilla activation depends on the extent of agglutination, which is a function of sex-specific flagellar properties and the amount and nature of the agglutinative material used. A hypothesis is presented to explain the observed phenomena.  相似文献   

7.
The relative amounts of Concanavalin A (Con A) bound by gamete and vegetative flagella of both mating types (mt + and mt -) of Chlamydomonas eugametos were determined using 125I-Con A. Con A agglutinated all cell types by cross-linking their flagella in a random manner. No correlation was found between the extent of Con A-binding and Con A-mediated isoagglutination. Con A inhibited the sexual interaction between gametes at various levels. In mt + gametes it blocked sexual agglutination, whereas in mt - gametes it prevented papillar fusion. By SDS-gel electrophoresis nine Con A-binding components were found to be present in flagella. However, it was not possible to allocate a role in sexual agglutination to any of these components since they were present in all cell types, including vegetative cells which are not able to sexually agglutinate.Abbreviations Con A concanavalin A - SDS sodium dodecyl sulphate - TB Tris buffer - PBS phosphate buffered saline - HRP horse radish peroxidase - SEM scanning electron microscope - PAS periodic acid Schiff  相似文献   

8.
Sex cell contact at fertilization is analysed in the mating type reaction of isogamous Chlamydomonas species. Contact is based upon a complementarity between special mating type substances, sex and species specific glycoprotein complexes. In three related taxa, the contact capactiy of their (+) gamete type is sensitive to snake venom protease (α-protease) and depends decisively on terminal α-glycosidically bound mannose residues. Enzymatic removal of these residues by α-mannosidase incapacitates live (+) gametes and inactivates isolated (+) mating type substance. (+) gametes inactivated by α-mannosidase or α-protease do not agglutinate with (?) gametes nor respond to isolated (?) mating type substance. Isolated (?) substance is adsorbed to and inactivated by the homologous (+) gametes. (+) gametes incapacitated by α-mannosidase or α-protease do not adsorb nor inactivate the isolated (?) substance. The agglutinability of live (?) gametes and the contact capacity of isolated (?) mating type substance is not affected by α-mannosidase or α-protease. The mannose residues react only within the species-typical complementarity. Some additional feature(s) of the (+) mating type substances must effect their species specificity and account for gametic isolation and sexual incompatibility between species.  相似文献   

9.
When mt+ and mt gametes of Chlamydomonas reinhardtiiwere mixed, shedding of cell walls took place in both matingtypes during massive agglutination and/or pairing. This wascaused by a cell wall lytic factor that had been induced byflagellar agglutination and excreted into the medium by cellsconcurrently with their cell wall release. When glutaraldehyde-fixed gametes and isolated flagella of onemating type caused isoagglutination of live gametes of the othermating type, the live mt+ gametes induced the lytic factor andshed their walls, whereas none of the live mt did this.The cell walls of mt gametes were lost only when thelytic factor, which had been excreted by mt+ gametes into themedium, acted from the outside. These data imply that mt+ gametesare responsible for the induction of the lytic factor by agglutination,which acts on cell walls of both mating types either endogenouslyor exogenously. (Received February 28, 1978; )  相似文献   

10.
Chlamydomonas eugametos gametes agglutinate sexually by their flagellar surfaces. The agglutination factor on mating type minus (mt-) gametes is thought to be a glycoprotein named PAS-1.2. To test this idea, an antiserum was raised against purified PAS-1.2., which reacted with isolated PAS-1.2 (immunoprecipitation tests) and blocked the ability of isolated PAS-1.2 to induce sexual twitching in mt + gametes. When tested with living cells, the antiserum specifically agglutinated mt - gametes and induced a reaction resembling twitching. Mt + flagella were shown to bind the antiserum (indirect immunofluorescence) but much less than mt - gametes. Mt - gametes pretreated with Fab fragments of the antiserum were unable to reproduce sexually, while treated mt + gametes were unaffected. This effect presumably results from the ability of the serum to block mt - sexual agglutination, for mt - isoagglutinin was completely inactivated by the serum, while mt + isoagglutinin was unaffected. It is therefore argued that PAS-1.2 is the in vivo mt - agglutination factor. However it is shown that the antiserum was able to react in vitro not only with PAS-1.2 but with several other proteins in both mt - and mt + flagella.Abbreviations SDS sodium dodecyl sulphate - PAS periodic acid-Schiff - GTC guanidine thiocyanate - mt +/- mating type plus or minus - PBS phosphate buffer-saline - Fab univalent antibody fragment The investigations were supported by the Foundation for Fundamental Biological Research (BION), which is subsidized by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.)  相似文献   

11.
Previous studies on flagellar adhesion in chlamydomonas (Snell, W. and S. Roseman. 1979. J. Biol. Chem. 254:10820-10829.) have shown that as gametes adhere to flagella isolated from gametes of the opposite mating type, the adhsiveness of the added flagella but not of the gametes is lost. The studies reported here show that the addition of protein synthesis inhibitors (cycloheximide [CH] or anisomycin) to the medium of such cell- flagella mixtures causes the cells to lose their adhesiveness. This loss, however, occurs only after the cells have interacted with 4-8 flagella/cell and does not occur if the cells are kept in CH (7 h) without aggregating. The availability of an impotent (imp) mating type plus (MT(+)) mutant (provided by U.W. Goodenough), which adheres but is unable to undergo the fusion that normally follows adhesion, made it possible to determine whether a similar loss of adhesiveness occurs in mixtures of matting type minus (mt(-)) and imp mt(+) gametes. In the absence of inhibitor, mt(-) and imp mt(+) gametes adhered to each other (without fusing) for several hours; however, in the presence of CH or anisomycin, the gametes began to de-adhere 35 min after mixing, and, by 90 min, 100 percent of the cells were single again. This effect was reversible, and the rapid turnover of cells were single again. This effect was reversible, and the rapid turnover of molecules involved in adhesion occurred only during adhesion inasmuch as gametes pretreated for 4 h with CH were able to aggregate in CH for the same length of time as nonpretreated cells aggregated in CH. By the addition of CH at various times after the mt(-) and imp mt(+) gametes were mixed, measurements were made of the “pool size” of the molecules involved in adhesion. The pool reached a minimum after 25 min of aggregation, rapidly increased for the next 25 min, and then leveled off at the premixing level. These results suggest that flagellar adhesion in chlamydomonas causes modification of surface molecules (receptors, ligands), which brings about their inactivation and stimulates their replacement.  相似文献   

12.
Antisera raised against vegetative and gametic flagella of Chlamydomonas reinhardi have been used to probe dynamic properties of the flagellar membranes. The antisera, which agglutinate cells via their flagella, associate with antigens that are present on both vegetative and gametic membranes and on membranes of both mating types (mt+ and mt-). Gametic cells respond to antibody presentation very differently from vegetative cells, mobilizing even high concentrations of antibody towards the flagellar tips; the possibility is discussed that such "tipping" ability reflects a differentiated gametic property relevant to sexual agglutinability. Gametic cells also respond to antibody agglutination by activating their mating structures, the mt+ reaction involving a rapid polymerization of microfilaments. Several impotent mt+ mutant strains that fail to agglutinate sexually are also activated by the antisera and procede to form zygotes with normal mt- gametes. Fusion does not occur between activated cells of like mating type. Monovalent (Fab) preparations of the antibody fail to activate mt+ gametes, suggesting that the cross-linking properties of the antisera are essential for their ability to mimic, or bypass, sexual agglutination.  相似文献   

13.
Summary During gamete-gamete adhesion in the unicellular green algaChlamydomonas eugametos, the sexual adhesion molecules or agglutinins that are located on the flagella are subject to tip-oriented migration and rapid inactivation. It is demonstrated that sexual adhesiveness is maintained by incorporation of additional agglutinins, recruited from a cellular pool. The location of this reservoir is unknown but, as indicated by its insensitivity to the chaotropic agent guanidine thiocyanate, it appears to be distinct from the large amount of agglutinins on the plasma membrane of the cell body. By viewing flagella of conjugating gametes in a confocal scanning laser microscope after immuno-labelling of the agglutinins, evidence was obtained for a linear arrangement of the agglutinins in two rows on the flagellar surface. This suggests that after insertion at the base of the flagellum, the agglutinins follow linear tracks to the tip and that the transport system is confined to two longitudinal domains. It is estimated that the half-life of flagellar agglutinins drops from 1–2 h in nonconjugating gametes to 1 min during conjugation, which suggests that after incorporation at the flagellar base, the agglutinins migrate to the tip with a velocity of 100 nm/s. Presumably after arrival at the tip, the molecules are inactivated. It is postulated that rapid turnover and transport of agglutinins are required for optimal signalling between partner gametes.Abbreviations BSA bovine serum albumine - CHI cycloheximide - CSLM confocal scanning laser microscope - GA glutaraldehyde - GTC guanidine thiocyanate - GAM-IgG goat-anti-mouse immuno-globuline - mAb monoclonal antibody - mt mating type - PBS phosphate-buffered saline - SDS sodiumdodecyl sulphate - TRIS tris-(hydroxymethyl)-aminomethane  相似文献   

14.
A new study of sexual agglutination between Chlamydomonas eugametos gametes and between vis-à-vis pairs has been made using techniques that allow one to distinguish between the flagella or cell bodies of individual mating types (mt+ or mt-). It is shown that before mt+ and mt- gametes fuse in pairs, their flagella, which adhere over their whole length, are maintained in a particular conformation around the mt- cell body. In clumps of agglutinating gametes the cells are asymmetrically distributed with the mt+ gametes constituting the outer surface of the clumps with the mt- gametes on the inside. The flagella are then all directed towards the middle of the clump. This orientation of the flagella is maintained for approx. 8 min after cell fusion before the vis-à-vis pair becomes motile. At this stage, all the flagellar tips are activated. The original mt+ flagellar tips then deactivate and swimming is resumed. The original mt- flagella remain immotile and activated after cell fusion and eventually shorten by a third, but only 30 min or more after fusion. Motile vis-à-vis pairs eventually settle to the substrate when the gamete bodies fuse completely to form a zygote. Settling vis-à-vis pairs are attracted to those that have already settled, to glutaraldehyde-fixed pairs and to flagella isolated from mt- gametes. They are not chemotactically attracted, rather they are weakly agglutinated. Living vis-à-vis pairs can be shown to aggregate in rows with the cell bodies lying side by side. It is argued that the flagellar agglutination sites involved in gamete recognition are also involved in vis-à-vis pair aggregationAbbreviations mt+/- mating type plus or minus - FTA flagellar tip activation  相似文献   

15.
Chlamydomonas eugametos gametes can sexually agglutinate via their flagellar surfaces whereas vegetative cells cannot. Therefore, flagellar glycoproteins, present in gamete cells but absent from vegetative cells, were investigated as prospective mt -agglutination factors. They were identified as periodic acid Schiff (PAS) stained bands separated in sodium dodecyl sulphate-polyacrylamide electrophoresis gels. Gamete-specific bands were determined by comparison with equivalent gels of vegetative flagella and by immunological techniques using antisera raised against isolated mt - gamete flagella. Four high molecular weight flagellar glycoproteins proved to be gamete specific (PAS-1.2, PAS-1.3, PAS-3 and PAS-4). They were extracted from flagella by 3 M guanidine thiocyanate, separated in a column of Sepharose 2B, and tested for in vitro agglutination activity on mt + gametes. A single peak of activity was found to be correlated with the presence of the PAS-1.2 band. It is shown that mt - agglutination activity is related to the concentration of this glycoprotein in flagellar membranes.Abbreviations SDS sodium dodecyl sulphate - PAS periodic acid Schiff - GTC guanidine thiocyanate - mt -/+ mating type plus or minus  相似文献   

16.
A pairing attraction between helical turns of subunits in a cylindrical crystal, like that in the dahlemense strain of tobacco mosaic virus, can cause the axis of the rod or crystal to become helical. This is true only if the number of helices is odd. The shape of a bacterial flagellum can be accounted for then if, as Caspar &; Holmes and Klug have suggested, rows of its subunits exhibit such a pairing interaction. Klug's thoughts on bacterial flagella are developed and extended into a model that accounts qualitatively for geometry, movement and polymorphism of flagella. If the number of helices between which there is a pairing interaction is odd, then the crystal is an imperfect cylindrical crystal. The geometry of such crystals is described. They contain a line defect, termed here an antiphase boundary, across which the pairing interaction is reversed. The boundary is a line of expansion on the convex side of a curved filament. Movement of flagella is explained by circumferential displacement of the antiphase boundary. One polymorphic form can convert to another if a dislocation passes along it. Straight flagella are perfect cylindrical crystals with no antiphase boundary.  相似文献   

17.
The effect of disulfide-reducing agent dithiothreitol (DTT) on the plus and minus agglutinins ofChlamydomonas reinhardtii gametes was studied. Live gametes of mating-type plus (mt +) lost their flagellar agglutinability by DTT treatment without any loss of cell motility and concurrently released into the medium agglutinin in an inactive form. DTT treated cells also lost completely their cell body-agglutinin. By contrast, the mating-type minus (mt -) gametes neither lost their agglutinability nor released agglutinin into the medium by DTT even at very high concentrations. In vitro experiments showed that plus agglutinin in solution is just as sensitive as that in vivo to DTT, whereas minus agglutinin is totally insensitive, and the sulfhydryl-oxidizing agent diamide restores the plus agglutinin activity immediately and completely. Isolated flagella from themt + gametes were also inactivated by DTT, but they retained the inactivated agglutinin on the surfaces. The results indicate that plus agglutinin, but not minus agglutinin, possesses disulfide bonds which are essential for the recognition/adhesion activity.Abbreviations mt +/- mating-type plus or minus - DTT dithiothreitol  相似文献   

18.
Evidence is presented which supports the concept of a functional membrane barrier in the transition zone at the base of each flagellum of Chlamydomonas eugametos gametes. This makes it unlikely that agglutination factors present on the surface of the cell body can diffuse or be transported to the flagellar membrane. The evidence is as follows: 1) The glycoprotein composition of the flagellar membrane is very different to that of the cell-body plasma membrane. 2) The flagella of gametes treated with cycloheximide, tunicamycin or , -dipyridyl become non-agglutinable but the source of agglutination factors on the cell body is not affected. 3) Even under natural conditions when the flagella are non-agglutinable, for example in vis-à-vis pairs or in appropriate cell strains that are non-agglutinable in the dark, the cell bodies maintain the normal complement of active agglutinins. 4) When flagella of living cells are labeled with antibodies bound to fluorescein, the label does not diffuse onto the cell-body surface. 5) When gametes fuse to form vis-à-vis pairs, the original mating-type-specific antigenicity of each cell body is slowly lost (probably due to the antigens diffusing over both cell bodies), while the specific antigenicity of the flagellar surface is maintained. Even when the flagella of vis-à-vis pairs are regenerated from cell bodies with mixed antigenicity, the antigenicity of the flagella remains matingtype-specific. 6) Evidence is presented for the existence of a pool of agglutination factors within the cell bodies but not on the outer surface of the cells.Abbreviations and symbols CHI cycloheximide - GTC guaniline thiocyanate - mt +/mt - mating type plus or minus - PAS Periodic-acid-Schiff reagent - SDS sodium dodecyl sulphate  相似文献   

19.
Sex cell adhesion in isogamous chlamydomonads is caused by a complementarity between sex-specific mating type substances, glycoproteins anchored in the flagella membrane of (+) and (\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop - \limits^. $\end{document}) gametes. The systems of mating type substances are species-specific and condition, by their individuality, gametic incompatibility between species. The adhesion systems of several species share one common feature: the attainment of the agglutination capacity is sensitive to tunicamycin, but in one sex only. The effect is interpreted as due to the interference of tunicamycin with the synthesis of the mating type substances by blocking of their glycosylation in one but not in the other sex. It is postulated that the tunicamycin-sensitive gametic adhesiveness depends, within the mating-type-specific glycoprotein, on an N-glycosidically bound ligand of carbohydrate nature. A concept on the origin of sibling species by mutative modulations within the proper ligands of the glycoproteinaceous mating type substances is developed.  相似文献   

20.
In medium with low nitrogen content, vegetative strains of the unicellular biflagellate alga Chlamydomonas reinhardi form gametes. Mating type plus (mt+) and mating type minus (mt-) gametes adhere via their flagella to give aggregates in which the gametes eventually fuse to form zygotes. A quantitative assay has now been developed which measures aggregation and fusion by use of a Coulter electronic particle counter to determine loss of single gametes as they form aggregates in suspension. Determination of the rate and extent of cell fusion by microscopy agrees with the results obtained with the more rapid and convenient Coulter counter assay. By use of the assay it was found that aggregation and fusion occur at the same rate and to the same extent at 12 degrees C and 25 degrees C. Flagella from one of the mating types can specifically substitute for the corresponding live gametes; more than 70% of the gametes were aggregated and the extent of aggregation was proportional to the number of flagella added, until the ratio of cells to flagella exceeded 2. At 22 degrees C, in the flagella/gamete mixtures, adhesion was complete in less than 5 min, but at 5 to 10 min, gametes began to de-adhere from the clusters and, depending on the number of flagella added, essentially all of the gametes detached from the aggregates in 10 to 50 min. The gametes in such mixtures were fully competent to aggregate again, whereas the flagella recovered from such mixtures were shown by use of a radioactive flagella-binding assay to be inactive with fresh gametes. Inactivation of the flagella was temperature-dependent, was not catalyzed by soluble factors, and required adhesion of flagella to gametes of the opposite mating type. The potential physiological functions of the de-adhesion process are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号