首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Hexokinase activity was found in both soluble (cytosolic) and particulate subcellular fractions prepared from rat pancreatic islet homogenates. The bound enzyme was associated with mitochondria rather than secretory granules. Relative to the total hexokinase activity, the amount of bound enzyme was higher in islet homogenates prepared at pH 6.0 (72 +/- 7%) than in islets homogenized at pH 7.4 (38 +/- 1%). The affinity of hexokinase for equilibrated D-glucose was not different in the cytosolic and mitochondrial fractions. In both fractions, hexokinase displayed a greater affinity for alpha- than beta-D-glucose, but a higher maximal velocity with the beta- than alpha-anomer. Glucose 6-phosphate inhibited to a greater extent cytosolic than mitochondrial hexokinase. A high Km glucokinase-like enzymic activity was also present in both subcellular fractions. It is proposed that the ambiguity of hexokinase plays a propitious role in the glucose-sensing function of pancreatic islet cells.  相似文献   

2.
The respective contribution of exogenous and intramitochondrially formed ATP to D-glucose phosphorylation by mitochondria-bound hexokinase was examined in both rat liver and pancreatic islet mitochondria by comparing the generation of D-glucose 6-[32P]phosphate from exogenous [gamma-32P]ATP to the total rate of D-[U-14C]glucose phosphorylation. In liver mitochondria, the fractional contribution of exogenous ATP to D-glucose phosphorylation ranged from 4 to 74%, depending on the availability of endogenous ATP formed by either oxidative phosphorylation or in the reaction catalyzed by adenylate kinase. Likewise, in islet mitochondria exposed to exogenous ATP but deprived of exogenous nutrient, about 60% of D-glucose phosphorylation was supported by mitochondrial ATP. Such a fractional contribution was further increased in the presence of ADP and succinate, and suppressed by mitochondrial poisons. It is concluded that, in islet like in liver mitochondria, mitochondrial ATP is used preferentially to exogenous ATP as a substrate for D-glucose phosphorylation by mitochondria-bound hexokinase. This may favour the maintenance of a high cytosolic ATP concentration in glucose-stimulated islet cells.  相似文献   

3.
4.
In pancreatic islet homogenates incubated in the presence of a high glucose concentration (40 mM), the beta-anomer of D-glucose is phosphorylated at a higher rate than the alpha-anomer, whether in the absence or presence of exogenous glucose 6-phosphate. However, in intact islets also exposed to 40 mM D-glucose, the production of 3H2O from D-[5-3H] glucose, the oxidation of D-[U-14C] glucose and the glucose-induced increment in either lactate production or 45Ca net uptake, as well as the release of insulin from isolated perfused pancreases, are not higher with beta- than alpha-D-glucose. It is concluded that the rate of glucose utilization by islet cells is not regulated solely by the activity of hexokinase and/or glucokinase.  相似文献   

5.
The fate of unlabelled D-glucose and D-[2-3H]glucose in pancreatic islets was simulated taking into account experimental values for glycolytic flux, intracellular concentration of D-glucose 6-phosphate and phosphoglucoisomerase activity. The model, which also takes into account the isotopic discrimination in velocity and intramolecular transfer of tritium between D-[2-3H]glucose 6-phosphate and D-[1-3H]fructose 6-phosphate in the reaction catalyzed by phosphoglucoisomerase, revealed that the predicted generation of 3HOH from D-[2-3H]glucose was much higher than the true experimental value. Such a discrepancy is reinforced by the consideration that the generation of 3HOH from D-[2-3H]glucose in islet cells is not solely attributable to the phosphoglucoisomerase-catalyzed detritiation of hexose 6-phosphates metabolized in the glycolytic pathway. In order to reconcile experimental and theoretical values for 3HOH production, it was found necessary to postulate enzyme-to-enzyme tunnelling of hexose 6-phosphates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. It is proposed that such a tunnelling may favour the anomeric specificity of D-glucose metabolism in islet cells, by restricting the anomerization of hexose 6-phosphates.  相似文献   

6.
Hexose metabolism in pancreatic islets. Inhibition of hexokinase.   总被引:4,自引:0,他引:4       下载免费PDF全文
In islet homogenates, hexokinase-like activity (Km 0.05 mM; Vmax. 1.5 pmol/min per islet) accounts for the major fraction of glucose phosphorylation. Yet the rate of glycolysis in intact islets incubated at low glucose concentrations (e.g. 1.7 mM) sufficient to saturate hexokinase only represents a minor fraction of the glycolytic rate observed at higher glucose concentrations. This apparent discrepancy between enzymic and metabolic data may be attributable, in part at least, to inhibition of hexokinase in intact islets. Hexokinase, which is present in both islet and purified B-cell homogenates, is indeed inhibited by glucose 6-phosphate (Ki 0.13 mM) and glucose 1,6-bisphosphate (Ki approx. 0.2 mM), but not by fructose 2,6-bisphosphate. In intact islets, the steady-state content of glucose 6-phosphate (0.26-0.79 pmol/islet) and glucose 1,6-bisphosphate (5-48 fmol/islet) increases, in a biphasic manner, at increasing concentrations of extracellular glucose (up to 27.8 mM). From these measurements and the intracellular space of the islets, it was estimated that the rate of glucose phosphorylation as catalysed by hexokinase represents, in intact islets, no more than 12-24% of its value in islet homogenates.  相似文献   

7.
The metabolism of D-glucose was recently reported to be impaired in pancreatic islets from second generation rats depleted in long-chain polyunsaturated omega3 fatty acids. Considering the increased clearance of circulating non-esterified fatty acids prevailing in these rats, a possible inhibition of glucokinase in insulin-producing cells by endogenous long-chain fatty acyl-CoA was considered. The present study was mainly aimed at assessing the validity of the latter proposal. The activity of glucokinase in islet homogenates, as judged from the increase in D-glucose phosphorylation rate in response to a rise in the concentration of the hexose represented, in the omega3-depleted rats, was only 81.8 +/- 4.8% (n = 11; p < 0.005) of the paired value recorded in control animals. This coincided with the fact that the inclusion of D-glucose 6-phosphate (3.0 mM) and D-fructose 1-phosphate (1.0 mM) in the assay medium resulted in a lesser fractional decrease of D-glucose phosphorylation in omega3-depleted rats than in control animals. Moreover, whereas palmitoyl-CoA (50 microM) decreased the activity of glucokinase by 38.0 +/- 6.0% (n = 4; p < 0.01) in islet homogenates from normal rats, the CoA ester failed to affect significantly the activity of glucokinase in islet homogenates from omega3-depleted rats. These findings afford direct support for the view that glucokinase is indeed inhibited by endogenous long-chain fatty acyl-CoA in islets from omega3-depleted rats, such an inhibition probably participating to the alteration of D-glucose catabolism prevailing in these islets.  相似文献   

8.
It was recently proposed that in rat pancreatic islets exposed to 8.3 mM D-glucose, alpha-D-glucose-6-phosphate undergoes enzyme-to-enzyme channelling between hexokinase isoenzyme(s) and phosphoglucoisomerase. To explore the identity of the hexokinase isoenzyme(s) involved in such a tunnelling process, the generation of 3HOH from the alpha- and beta-anomers of either D-[2-3H]glucose or D-[5-3H]glucose was now measured over 60 min incubation at 4 degrees C in pancreatic islets exposed only to 2.8 mM D-glucose, in order to decrease the relative contribution of glucokinase to the phosphorylation of the hexose. Under these experimental conditions, the ratio for 3HOH production from D-[2-3H]glucose/D-[5-3H]glucose at anomeric equilibrium (39.7 +/- 11.6%) and the beta/alpha ratios for the generation of 3HOH from either the D-[2-3H]glucose anomers (70.9 +/- 12.6%) or the D-[5-3H]glucose anomers (59.6 +/- 12.4%) indicated that a much greater fraction of alpha-D-glucose-6-phosphate escapes from the process of enzyme-to-enzyme channelling in the islets exposed to 2.8 mM, rather than 8.3 mM D-glucose. These findings suggest, therefore, that the postulated process of enzyme-to-enzyme channelling involves mainly glucokinase.  相似文献   

9.
In rat parotid or pancreatic islet homogenates incubated at 7 degrees C, hexokinase displayed a greater affinity for but a lower maximal velocity with the alpha-anomer, as distinct from beta-anomer, of D-mannose. The anomeric specificity of mammalian hexokinase was similar in the case of D-mannose and D-glucose, but represented a mirror image of that of yeast hexokinase.  相似文献   

10.
The interaction of yeast hexokinase with Procion Green H-4G.   总被引:4,自引:3,他引:1       下载免费PDF全文
1. A number of reactive triazine dyes specifically and irreversibly inactive yeast hexokinase at pH 8.5 and 33 degrees C. Under these conditions, the enzyme is readily inactivated by 100 microM-Procion Green H-4G, Blue H-B, Turquoise H-7G and Turquoise H-A, is less readily inactivated by Procion Brown H-2G. Green HE-4BD, Red HE-3B and Yellow H-5G and is not inactivated at all by Procion Yellow H-A. 2. The inactivation of hexokinase by Procion Green H-4G is competitively inhibited by the adenine nucleotides ATP and ADP and the sugar substrates D-glucose, D-mannose and D-fructose but not by nonsubstrates such as D-arabinose and D-galactose. 3. Quantitatively inhibited hexokinase contains approx. 1 mol of dye per mol of monomer of mol.wt. 51000. The inhibition is irreversible and activity cannot be recovered on incubation with high concentration (20 mM) of ATP or D-glucose. 4. Mg2+ protects the enzyme against inactivation by Procion Green H-4G but enhances the rate of inactivation by all the other Procion dyes tested. In the presence of 10 mM-Mg2+ the apparent dissociation constant between enzyme and dye is reduced from 199.0 microM to 41.6 microM. Binding of the dye to hexokinase is accompanied by characteristic spectral changes in the range 560-700 nm. 5. Mg2+ promotes binding of yeast hexokinase to agarose-immobilized Procion Green H-4G but not to the other dyes tested. Elution could be effected by omission of Mg2+ from the column irrigants or by inclusion of MgATP or D-glucose, but not by D-galactose. These effects can be exploited to purify hexokinase from crude yeast extracts. 6. The specific active-site-directed binding of triazine dyes to yeast hexokinase is interpreted in terms of the crystallographic structure of the hexokinase monomer.  相似文献   

11.
The possible relevance of D-glucose phosphorylation by mitochondria-bound hexokinase to the control of respiration was examined in mitochondria prepared from either tumoral pancreatic islet cells (RINm5F line) or normal rat liver. In both systems, ATP generated by mitochondria exposed to ADP and succinate could serve as a substrate for the phosphorylation of D-glucose. However, after exposure to exogenous ADP in the presence of succinate, only mitochondria isolated from RINm5F cells displayed a sizeable increase in O2 consumption in response to a subsequent administration of D-glucose. In this respect, the discrepancy between mitochondria from islet cells and liver, respectively, was found to be attributable to the much lower hexokinase activity, relative to respiratory rate, in liver than in RINm5F cell mitochondria. It is speculated that the coupling between hexose phosphorylation and respiration in islet cells may prime the mitochondria to generate ATP during the early metabolic and secretory response to a rise in extracellular D-glucose concentration.  相似文献   

12.
This study aims at establishing the contribution of alpha- and beta-D-glucose to the total generation of (3)HOH by rat pancreatic islets exposed to D-[2 - (3)H]glucose or D-[5 - (3)H] glucose at anomeric equilibrium. The islets were incubated for 60 min at 4 degrees C in the presence of equilibrated D-glucose (2.8 and 8.3 mM) mixed with tracer amounts of either alpha- or beta-D-glucose labelled with tritium on either the C (2) or C (5) of the hexose. Relative to their respective concentrations, (3)HOH generation from the anomers labelled with tritium on the C (2) or C (5) of the hexose provided beta/alpha ratios comparable to those previously found at both 2.8 and 8.3 mM, when the islets were exposed to each anomer separately. The relative contributions of each anomer to the total generation of (3)HOH was also close to the theoretical values derived from mathematical models for the catabolism of D-glucose at anomeric equilibrium in rat islets at both 2.8 and 8.3 mM and in the case of both D-[2 - (3)H]glucose and D-[5 - (3)H]glucose. Thus, even in islets exposed to D-glucose at anomeric equilibrium, the metabolic fate of alpha-D-glucose differs vastly from that of beta-D-glucose, the enzyme-to-enzyme channelling between hexokinase isoenzymes, especially glucokinase, and phosphoglucoisomerase being restricted to alpha-D-glucose 6-phosphate.  相似文献   

13.
Fructose, like glucose, rapidly equilibrates across the plasma membrane of pancreatic islet cells, but is poorly metabolized and is a weak insulin secretagogue in rat pancreatic islets. A possible explanation for such a situation was sought by investigating the modality of fructose phosphorylation in islet homogenates. Several findings indicated that the phosphorylation of fructose is catalyzed by hexokinase, but not fructokinase. First, at variance with the situation found in liver homogenates, the phosphorylation of fructose in the islet homogenate was unaffected by K+ and inhibited by glucose, mannose, glucose 6-phosphate or glucose 1,6-bisphosphate. Second, the Km for fructose was much higher in islets than in liver. Third, in islet homogenates the Km and Vmax for fructose were much higher than those for glucose or mannose phosphorylation, at low aldohexose concentrations, in good agreement with the properties of purified hexokinase. In intact islets fructose augmented the islet content in glucose 6-phosphate sufficiently to cause marked inhibition of its own rate of phosphorylation. These findings may account, in part at least, for the low rate of fructose utilization by rat pancreatic islets.  相似文献   

14.
D-mannoheptulose is currently used as a tool to inhibit, in a competitive manner, D-glucose phosphorylation, metabolism and functional effects in the pancreatic islet B-cell. In order to better understand the mode of action of the heptose, we have explored its effect upon D-glucose phosphorylation in liver, parotid cells and islet homogenates, this allowing to characterize the interference of the heptose with glucokinase and/or hexokinase. The effect of D-mannoheptulose upon the metabolism of D-glucose was also examined in both intact parotid cells and pancreatic islets. Last, the effect of D-mannoheptulose upon glucose-stimulated insulin release was reinvestigated over large concentration ranges of both the heptose and hexose. The experimental data revealed a mixed type of D-mannoheptulose inhibitory action upon D-glucose phosphorylation, predominantly of the non-competitive and competitive type, in liver and parotid homogenates, respectively. Despite efficient inhibition of hexose phosphorylation in both parotid cell and islet homogenates, the heptose suppressed the metabolic and functional responses to D-glucose only in pancreatic islets, whilst failing to affect adversely D-glucose catabolism in parotid cells. These findings suggest that factors such as the intracellular transport and availability of the heptose may interfere with the expression of its antagonistic action upon D-glucose metabolism.  相似文献   

15.
Pancreatic islets stimulated with D-glucose are known to liberate arachidonic acid from membrane phospholipids and release prostaglandin E2 (PGE2). A component of the eicosanoid release induced by D-glucose has been demonstrated to occur without calcium influx and must be triggered by other coupling mechanisms. In this study, we have attempted to identify mechanisms other than calcium influx which might couple D-glucose stimulation to hydrolysis of arachidonate from membrane phospholipids in islet cells. We have found that occupancy of the beta cell plasma membrane D-glucose transporter is insufficient and that D-glucose metabolism is required to induce islet PGE2 release because 3-O-methylglucose fails to induce and mannoheptulose prevents PGE2 release otherwise induced by 17 mM D-glucose. The carbohydrate insulin secretagogues mannose and D-glyceraldehyde have also been found to induce islet PGE2 release, but the non-secretagogue carbohydrates L-glucose and lactate do not. Carbohydrate secretagogues are known to be metabolized to yield ATP and induce depolarization of the beta cell plasma membrane. We have found that depolarization by 40 mM KCl induces PGE2 release only in the presence and not in the absence of extracellular calcium, but exogenous ATP induces islet PGE2 release with or without extracellular calcium. Carbachol is demonstrated here to interact synergistically with increasing concentrations of glucose to amplify PGE2 release and insulin secretion. Pertussis toxin treatment is shown here not to prevent PGE2 release induced by glucose or carbachol but to increase the basal rate of PGE2 release and the islet cyclic AMP content. Theophylline (10 mM) exerts similar effects. Eicosanoid release in pancreatic islets can thus be activated by multiple pathways including muscarinic receptor occupancy, calcium influx, increasing cAMP content, and a metabolic signal derived from nutrient secretagogues, such as ATP.  相似文献   

16.
Sener  A.  Scruel  O.  Louchami  K.  Jijakli  H.  Malaisse  W.J. 《Molecular and cellular biochemistry》1999,194(1-2):133-145
The analog of D-glucose, 3-O-methyl-D-glucose, is thought to delay the equilibration of D-glucose concentration across the plasma membrane of pancreatic islet B-cells, but not to exert any marked inhibitory action upon the late phase of glucose-stimulated insulin release. In this study, however, 3-O-methyl-D-glucose, when tested in high concentrations (30-80 mM) was found to cause a rapid, sustained and not rapidly reversible inhibition of glucose-induced insulin release in rat pancreatic islets. In relative terms, the inhibitory action of 3-O-methyl-D-glucose was more marked at low than high concentrations of D-glucose. It could not be attributed to hyperosmolarity and appeared specific for the insulinotropic action of D-glucose, as distinct from non-glucidic nutrient secretagogues. Although 3-O-methyl-D-glucose and D-glucose failed to exert any reciprocal effect upon the steady-state value for the net uptake of these monosaccharides by the islets, the glucose analog inhibited D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation. This coincided with increased 86Rb outflow and decreased 45Ca outflow from prelabelled islets, as well as decreased 45Ca net uptake. A preferential effect of 3-O-methyl-D-glucose upon the first phase of glucose-stimulated insulin release was judged compatible with an altered initial rate of D-glucose entry into islet B-cells. The long-term inhibitory action of the glucose analog upon the metabolic and secretory response to D-glucose, however, may be due, in part at least, to an impaired rate of D-glucose phosphorylation. The phosphorylation of the hexose by beef heart hexokinase and human B-cell glucokinase, as well as by parotid and islet homogenates, was indeed inhibited by 3-O-methyl-D-glucose. The relationship between insulin release and D-glucose utilization or oxidation in the presence of 3-O-methyl-D-glucose was not different from that otherwise observed at increasing concentrations of either D-glucose or D-mannoheptulose. It is concluded, therefore, that 3-O-methyl-D-glucose adversely affects the metabolism and insulinotropic action of D-glucose by a mechanism largely unrelated to changes in the intracellular concentration of the latter hexose.  相似文献   

17.
Kinetic characteristics of glucose transport and glucose phosphorylation were studied in the islet cell line beta TC-1 to explore the roles of these processes in determining the dependence of glucose metabolism and insulin secretion on external glucose. The predominant glucose transporter present was the rat brain/erythrocyte type (Glut1), as determined by RNA and immunoblot analysis. The liver/islet glucose transporter (Glut2) RNA was not detected. The functional parameters of zero-trans glucose entry were Km = 9.5 +/- 2 mM and Vmax = 15.2 +/- 2 nmol min-1 (microL of cell water)-1. Phosphorylation kinetics of two hexokinase activities were characterized in situ. A low-Km (0.036 mM) hexokinase with a Vmax of 0.40 nmol min-1 (microL of cell water)-1 was present along with a high-Km (10 mM) hexokinase, which appeared to conform to a cooperative model with a Hill coefficient of about 1.4 and a Vmax of 0.3 nmol min-1 (microL of cell water)-1. Intracellular glucose at steady state was about 80% of the extracellular glucose from 3 to 15 mM, and transport did not limit metabolism in this range. In this static (nonperifusion) system, 2-3 times more immunoreactive insulin was secreted into the medium at 15 mM glucose than at 3 mM. The dependence of insulin secretion on external glucose roughly paralleled the dependence of glucose metabolism on external glucose. Simulations with a model demonstrated the degree to which changes in transport activity would affect intracellular glucose levels and the rate of the high-Km hexokinase (with the potential to affect insulin release).  相似文献   

18.
Tacrolimus is widely used for immunosuppressant therapy, including various organ transplantations. One of its main side effects is hyperglycemia due to reduced insulin secretion, but the mechanism remains unknown. We have investigated the metabolic effects of tacrolimus on insulin secretion at a concentration that does not influence insulin content. Twenty-four-hour exposure to 3 nM tacrolimus reduced high glucose (16.7 mM)-induced insulin secretion (control 2.14 +/- 0.08 vs. tacrolimus 1.75 +/- 0.02 ng.islet(-1).30 min(-1), P < 0.01) without affecting insulin content. In dynamic experiments, insulin secretion and NAD(P)H fluorescence during a 20-min period after 10 min of high-glucose exposure were reduced in tacrolimus-treated islets. ATP content and glucose utilization of tacrolimus-treated islets in the presence of 16.7 mM glucose were less than in control (ATP content: control 9.69 +/- 0.99 vs. tacrolimus 6.52 +/- 0.40 pmol/islet, P < 0.01; glucose utilization: control 103.8 +/- 6.9 vs. tacrolimus 74.4 +/- 5.1 pmol.islet(-1).90 min(-1), P < 0.01). However, insulin release from tacrolimus-treated islets was similar to that from control islets in the presence of 16.7 mM alpha-ketoisocaproate, a mitochondrial fuel. Glucokinase activity, which determines glycolytic velocity, was reduced by tacrolimus treatment (control 65.3 +/- 3.4 vs. tacrolimus 49.9 +/- 2.8 pmol.islet(-1).60 min(-1), P < 0.01), whereas hexokinase activity was not affected. These results indicate that glucose-stimulated insulin release is decreased by chronic exposure to tacrolimus due to reduced ATP production and glycolysis derived from reduced glucokinase activity.  相似文献   

19.
A multifactorial quantitative analysis of oscillations in glycolysis was conducted in the postmicrosomal supernatant of rat muscle homogenates incubated in the presence of yeast hexokinase. Oscillations in adenine nucleotides, D-fructose 1,6-bisphosphate, triose phosphates, L-glycerol 3-phosphate, 3HOH generation from D-[5-3H]glucose, NADH and L-lactate production were documented. The occurrence of such oscillations were found to depend mainly on the balance between the consumption of ATP associated with the phosphorylation of D-glucose, as catalyzed by both yeast and muscle hexokinase, and the net production of ATP resulting from the further catabolism of D-fructose 6-phosphate, as initiated by activation of phosphofructokinase. The oscillatory pattern was suppressed in the presence of D-fructose 2,6-bisphosphate. It is proposed that the quantitative information gathered in this study may set the scene for further studies in extracts of cells other than myocytes, e. g. hepatocytes and pancreatic islet cells, in which no oscillation of glycolysis was so far observed.  相似文献   

20.
In thyroidectomized rats, the activity of FAD-linked glycerophosphate dehydrogenase was severely diminished in liver homogenates but not affected significantly in pancreatic islet homogenates, whilst the activity of 2-ketoglutarate dehydrogenase was decreased modestly in both liver and islet homogenates. Likewise, in intact islets of thyroidectomized rats, the generation of3HOH from [2-3H]glycerol was not decreased, and the ratio between oxidative and total glycolysis not significantly lower than in islets from sham-operated rats, at least in the presence of a high concentration of D-glucose. Nevertheless impaired oxidation of both D-[3,4-14C]glucose and D-[6-14C]glucose was observed in islets of thyroidectomized rats, the relative magnitude of such a decrease being more pronounced at a low than at a high D-glucose concentration. Such metabolic anomalies coincided with a lower level of plasma insulin and a decreased output of insulin by islets incubated at low (2·8 mM ), but not higher, concentrations of D-glucose. It is concluded that hypothyroidism does not mimic the deficiency in islet FAD-linked glycerophosphate dehydrogenase activity found in rats with inherited or acquired non-insulin-dependent diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号