首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The interactive effects of citrus root residues and soil fungi on citrus replant problems were investigated. The results indicated that incorporation of citrus root residues in combination with the pathogenic fungiPhytophthora citrophthora, Pythium aphanidermatum andFusarium solani in soil caused more reduction to sour orange growth than did the root residues alone. Subsequent experiments showed that extracts of different parts of sour orange and leachates of some soil fungi increased the disease index of citrus roots grownin vitro. The citrus extracts did not affect growth of the test fungi.Thus, it appears that allelopathic compounds of plant and microbial origins build up in old citrus soil and may act as predisposal agents for the infection of citrus roots by soil pathogens.  相似文献   

2.
Dirac  Monica F.  Menge  John A. 《Plant and Soil》2002,241(2):243-249
In regions with a mediterranean climate such as southern California, P. citrophthora infection of citrus does not normally occur during the summer. However, in this study, P. citrophthora was isolated abundantly from alternative hosts planted in an infested citrus grove, in the middle of the summer. Citrus root infection from P. citrophthora did occur in this study but it was extremely low. Citrus seedlings grown in autoclaved soil from Pauma Valley, artificially infested with P. citrophthora, contained significantly higher levels of infection than seedlings grown in infested, non-autoclaved, soil or in part autoclaved, part non-autoclaved, infested soil. This suggests that the Pauma Valley soil contains microorganisms naturally suppressive to P. citrophthora.The low occurrence of P. citrophthora infection of citrus roots during the summer may be partially due to soil microorganisms associated with the citrus host and not the inability of P. citrophthora to grow well at the soil temperatures found during the summer in southern California.  相似文献   

3.
The role of allelopathy in citrus replant problems was investigated in Iraq. The failure of citrus seedlings to grow normally in old citrus orchards was not caused by differences between old and non-citrus soils in electrical conductivity, pH, organic matter, soil texture and those minerals tested. Extracts of soil collected from old citrus orchards significantly reduced the growth of sour orange seedlings. Extracts and decaying sour orange roots reduced the growth of sour orange seedlings as did extracts of non-senescent sour orange leaves and decaying senescent leaves. Thus it appears that allelopathy is at least partly involved in the citrus replant problem.  相似文献   

4.
Interactions between Fusarium solani and Phytophthora parasitica or F. solani and P. citrophthora influenced the development of root rot of citrus but depended on the temporal order of inoculation with F. solani or the two Phytophthora spp. Inoculation of citrus with either Fusarium solani and Phytophthora parasitica or Phytophthora citrophthora increased root rot compared to inoculation with P. parasitica or P. citrophthora alone when plants were inoculated with Phytophthora by dipping their roots in zoospore suspensions and subsequently transplanted into soil infested with F. solani. However, root rot was not increased by simultaneous co-inoculation of P. parasitica and F. solani or when plants were inoculated with F. solani first. Root rot was not increased when heat-stressed or non-stressed plants were inoculated with P. parasitica 30 days after transplanting into soil infested with F. solani. In most but not all experiments, F. solani alone reduced growth of tops or roots a small but significant amount.Co-inoculation of citrus by root-dipping into zoospore suspensions of P. parasitica and transplanting into soil infested with F. solani reduced feeder root length by 62% and root weight by 61% but did not significantly reduce the percentage of living roots when compared to inoculation with P. parasitica alone. When citrus roots were immersed in zoospore suspensions of P. citrophthora and transplanted into soil infested with F. solani, feeder root length was reduced by 68%, but feeder root weight and the percentage of living roots were not significantly reduced when compared to plants inoculated with P. citrophthora alone.Propagule densities of both P. parasitica and P. citrophthora in the rhizosphere of plants inoculated by root-immersion and then transplanting into soil infested with F. solani were not significantly different than propagule densities from plants transplanted into non-infested soil. Propagule densities of P. parasitica were suppressed an average of 41% when citrus was inoculated with P. parasitica 30 days after transplanting into soil infested with F. solani and by 41% when citrus was co-inoculated by transplanting into soil infested with both F. solani and P. parasitica.  相似文献   

5.
In this research, distribution of Phytophthora species were determined in Kerman Province (Bam, Shahdad and Arzuiyeh) during 2004–2007. The Phytophthora species were isolated from infected root, crown and soil. Root and crown pieces were washed and cultured on a CMA-PARPH medium. The isolation from infected soil was performed by bating method using citrus leaves. It was identified by morphological and several physiological characteristics. Distribution of species was determined by recording the number of isolates recovered from samples from each city. In this study, from 220 soil samples collected from 52 citrus orchards, 80 isolates of Phytophthora were recovered. Among of all isolates of Phytophthora, P. parasitica and P. citrophthora were the most important species of causal agent of gummosis on Citrus sp. Distribution of P. citrophthora was highest in Arzuiyeh and lowest in Bam and Shahdad cities, while distribution of P. parasitica was highest in Bam and Shahdad cities. The majority of soil samples contained only P. parasitica, but a few of percentage samples containing P. citrophthora alone and both of fungi in cites samples.  相似文献   

6.
Evidence for biological nature of the grape replant problem in California   总被引:2,自引:0,他引:2  
Westphal  Andreas  Browne  Greg T.  Schneider  Sally 《Plant and Soil》2002,242(2):197-203
A bioassay was developed to investigate causes of grape replant problems under controlled conditions. Soils were collected from methyl bromide-fumigated and non-fumigated plots at a site cleared from a 65-year-old grape vineyard (Vitis vinifera cv. Thompson seedless) at Parlier, CA. Subsamples of the non-fumigated soil were either left non-treated, subjected to autoclaving (twice 45 min), or heating at 40, 50, 60, 70, 80 or 90 °C for 30 min. Subsequently, the samples were placed in 120-mL pots, planted with rooted hardwood grape cuttings (V. vinifera, cv. Carignane) and placed in a greenhouse or growth chamber. Three months after transplanting, vines from non-treated or 40 °C-treated soil had lower shoot weights and densities of healthy lateral roots than vines from the other treatments. Pythium spp. were isolated from 45 to 55% of the plated root segments from vines grown in non-treated, or soil that had been heated at 40 or 50 °C but were not detected in roots from soil given other treatments. Egg masses of root-knot nematode, Meloidogyne spp., were produced on roots from non-treated or heated at 40 °C soil, but no egg masses were detected on roots of the other treatments. In another test with the same soils, remnant roots from non-fumigated or pre-plant methyl bromide-fumigated soil were extracted and amended to non-fumigated soil, soil from fumigated field plots, soil fumigated in a small container, or autoclaved potting mix. The transfer of old vine roots from non-fumigated field soil resulted in incidence of Pythium spp. on grape assay roots, but there was no measurable effect of the transfer on growth and health of the bioassay plant roots. The results of the bioassays indicate that grape replant problem at the California site had biological causes. The bioassay approach may aid in future determinations of the etiology of grape replant problems.  相似文献   

7.
Qishui Zhang 《Plant and Soil》1993,151(2):205-210
The role of allelopathy in the Chinese-fir (Cunninghamia lanceolata) replant problem was studied. The failure of Chinese-fir seedlings to grow normally in Chinese-fir replant woodland was not only caused by the depletion of nutrients and the deterioration of the structure of replant woodland soil, but also by biotic factors and allelopathy. Extracts of soils collected from replant woodlands significantly reduced the growth of Chinese-fir seedlings. Extracts and decomposing root residues also significantly inhibited the growth of Chinese-fir seedlings. Extracts of the replant soil and of the decomposing roots from Chinese-fir replant woodland were both toxic to other plants. The combination of the decomposing root residues and the pathogenic fungi reduced the growth of Chinese-fir seedlings the most when compared to the decomposing root residue alone and the control. It appears that allelopathy is at least partly involved in the Chinese-fir replant problem. ei]Section editor: R Rodriguez-Kabana  相似文献   

8.
Okra was grown in field plots of Tifton loamy sand naturally infested with the nematodes Meloidogyne incognita and Criconemoides ornalus and the pathogenic fungi Fusarium oxysporum, F. solani, F. roseum, and Pythium spp. Plots were treated with various soil pesticides and left exposed or covered with biodegradable paper film mulch under trickle irrigation. Soil was assayed for nematodes and fungi, and plant roots were examined for root-rot and insect damage. Fewer nematodes and fungi generally were recovered from soil treated with DD-MENCS (with and without film mulch) or methyl bromide-chloropicrin (2:1) (MBC) and film mulch than from nontreated soil. Funfigation with DD-MENCS or MBC suppressed populations of M. incognita, C. ornatus, F. oxysporum, F. solani, F. roseum, and Pythium spp. Ethoprop (alone or combined with other pesticides), sodium azide, and chloroneb were less effective than DD-MENCS and MBC. Plant growth anti yield were greatest when nematodes and pathogenic fungi were controlled. Yield was increased 3-fold by DD-MENCS + film mulch or MBC + film mulch in comparison with the average yield of okra produced in Georgia. The root-knot nematode-Fusarium wilt complex was most severe in nonfuntigated soil.  相似文献   

9.
Growth, dry root weight of seedlings and root score of apple seedlings cv. McIntosh were reduced when soils were inoculated with Pratylenchus penetrans, Penicillium janthinellum, Constantinella terrestris, Trichoderma sp., and 4 strains of Bacillus subtilis. Trichoderma sp., and B-1 and B-26 strains of B. subtilis alone reduced plant growth but the combination of Trichoderma sp. + B. subtilis (B-1) and Trichoderma sp. + B. subtilis (B-26) increased plant height. Plant height, root weight and root score were significantly reduced when P. penetrans plus B. subtilis or P. penetrans plus fungi plus bacteria were present in the soil. It is suggested that fungi, bacteria, nematodes alone or their combinations such as nematodes plus bacteria or nematodes plus fungi plus bacteria may contribute towards the occurrence of apple replant disease.Contribution number 700.Contribution number 700.  相似文献   

10.
Phytophthora citrophthora was inhibited to a greater extent than P. nicotianac var. parasitica by chloramphenicol, hymexazol, PCNB and pimaricin at concentrations used in selective media for the isolation of Phytophthora spp. Reduced concentrations of the antimicrobial components of the selective media to tolerant levels for P. citrophthora markedly increased the recovery of the two brown rot pathogens from soil. Mycelium of both Phytophthora spp. survived in air-dried soil for at least 5 months while mycelium of most Phytophthora spp. do not survive in dry soil. In moist soil, P. nicotianae var. parasitica produced hyphal swellings, sporangia and chlamydospores. P. citrophthora produced hyphal swellings and sporangia, but no chlamydospores. No oospores were produced, even in pairing cultures on agar plates with isolates obtained from several locations of citrus groves andfruits by both species. Sporania were obtained in both species in citrus groves on mycelium mats, in the rhizosphere, in infected leaves and fruits buried at soil depths of 5–35 cm. Numbers of propagules declined during the incubation period, but conside, rable numbers survived throughout the experimental period (6 months). Although P. nicotianae var. parasitica produced chlamydospores while P. citrophthora did not, numbers of surviving propagules recovered from soil after 6 months were comparable with both species. The brown rot pathogens survived in soil both as colonizers of detached leaves and fruits and as parasites in living root tissues.  相似文献   

11.
The aim of this study was to examine rhizosphere fungal community development in apple replant soil and a new planting soil in Beijing through a potted experiment with the apomictic triploid Pingyitiancha rootstock using the Illumina Miseq method. Steam sterilization significantly enhanced seedling growth in replant soil, while root segment addition did not enhance replant disease symptoms. The bulk soil of the replant site (ReSoil) and the new soil of the planting site (NewSoil) were sampled prior to nursery planting, and rhizosphere soils were r Qinping esampled after one growing season as RePlant and NewPlant, respectively. Approximately 48.3, 47.9, 59.8 and 68.8% of the operational taxonomic units (OTUs) were classified as Ascomycota and Basidiomycota in the community of ReSoil, New Soil, RePlant and NewPlant, respectively. Shannon indices suggested that planting apple nurseries increased the fungal diversity of rhizosphere soil in both soils. Apple replant disorder (ARD) was highly associated with an unbalanced microbial ecosystem with more saprophytic and pathogenic fungi, but less species known to produce antimicrobial metabolites, while Rhizopus, Pyrenochaeta and Eurotium were identified as the key factors in ARD.  相似文献   

12.
The effects of arbuscular mycorrhizae (AM) on the development and nutrition of the peach almond hybrid GF-677 rootstock in a replant soil heavily infested with Meloidogyne javanica were evaluated in field microplot conditions for two growing seasons. There was a significant beneficial effect of mycorrhizal inoculation on plant growth and nutrition in previously pasteurized replant soil. In natural replant soil, early inoculation with a mixed AM inoculum of Glomus intraradices, Glomus mosseae and Glomus etunicatum did not affect growth parameters. Whilst inoculation with these AM fungi led to suppression of root-knot nematode reproduction, natural mycorrhizal colonization of the replant soil with native AM fungi did not. Accepted: 6 December 2000  相似文献   

13.
Intercropping Ageratum conyzoides in citrus orchards may effectively suppress weeds and control other pests. Investigations showed that the inhibition of major weeds and soil pathogenic fungi in citrus orchards was significantly correlated with the allelochemicals released into the soil by intercropped A. conyzoides. Three flavones, ageratochromene, and its two dimers were isolated and identified from the A. conyzoides intercropped citrus orchard soil. These allelochemicals had different biological actions on major weeds and soil pathogenic fungi in the citrus orchard. Three flavones and ageratochromene could significantly inhibit the growth of weeds Bidens pilosa, Digitaria sanguinalis and Cyperus difformis, and spores germination of soil pathogenic fungi Phytophthora citrophthora, Pythium aphanidermatum and Fusarium solani. However, two dimers of ageratochromene had no inhibitory actions on them. The presence of these allelochemicals in soils suggests that they may be able to make a major contribution to control some weeds and diseases in citrus orchards. Further studies revealed that dynamic transformation between ageratochromene and its two dimers in the A. conyzoides intercropped citrus orchard soil was reversible, that is, ageratochromene released from ground A. conyzoides plants was transformed into its dimers, and the dimers can be remonomerized in the soils. However, this dynamic transformation did not occur in the soil with low organic matter and fertility. The dimerization was not correlated with microorganisms in the soil, but the biodegradation of both ageratochromene and its two dimers may have occurred, particularly in the soil with low organic matter and fertility. Our results strongly suggest that the reversible transformation between ageratochromene and its dimers in the A. conyzoides intercropped citrus orchard soil can be an important mechanism maintaining bioactive allelochemicals at an effective concentration, thus, sustaining the inhibition of weeds and pathogenic fungi in soil.  相似文献   

14.
We examined the role ofarbuscular mycorrhizal fungi (AMF) in thebioprotection of the sand dune grass Leymus arenarius against soil fungi andnematodes. Six soil fungi (Fusariumnivale, Fusarium sp., Cladosporiumherbarum, Cladosporium sp., Phomasp., Sporothrix sp.) and four species ofnematodes (Pratylenchoidesmagnicauda, Paratylenchusmicrodorus, Rotylenchus goodeyi, Merlinius joctus) were isolated from a coastalsand dune in Iceland where a population of L. arenarius was declining in vigour. Acommercial AMF inoculum (Microbio Ltd. England)containing Glomus caledonium, G.fasciculatum, and G. mossae was used.Seedlings of L. arenarius were grownunder controlled conditions in sterile sand andsubjected to the following treatments: (1)control, (2) + AMF, (3) + AMF + soil fungi, (4)+ AMF + nematodes, (5) + AMF + nematodes + soilfungi, (6) + soil fungi, (7) + soil fungi +nematodes, (8) + nematodes. Mycorrhizal plantshad significantly the highest root dry weightof all treatments. Mycorrhizal plants hadsignificantly higher leaf dry weight thanplants in other treatments, with the exceptionof AMF inoculated plants exposed to nematodes. Mycorrhizal plants exposed to soil fungi andnematodes had significantly higher growthparameters except total number of leaves thanAMF inoculated plants exposed to both soilfungi and nematodes. Mycorrhizal plantssubjected to a dual application of soil fungiand nematodes did not vary significantly in anygrowth parameters from plants without AMF thatwere exposed to a dual application of soilfungi and nematodes. This suggests asynergistic effect of soil fungi and nematodesthat break down the protection of AMF againstpathogens. The results are discussed inrelation to plant dynamics of sand duneecosystems.  相似文献   

15.
G. E. Walker 《Plant and Soil》1988,107(1):107-112
Mycelial growth ofPhytophthora nicotianae var.parasitica in vitro was inhibited by phosphorous and acetyl salicylic acids at 10 ppm; mycelial growth ofP. citrophthora was inhibited by phosphorous acid at 10 ppm and acetyl salicylic acid at 100 ppm. Foliar sprays and soil drenches with these chemicals were compared with soil applications of metalaxyl as treatments for Phytophthora root-rot of container-grown citrus (var. Cleopatra mandarin) caused by the aforementioned spp. Foliar sprays with 0.1% phosphorous acid were as effective as the metalaxyl treatment in promoting root growth and phosphorous acid offers considerable potential as an alternative treatment for Phytophthora root-rot of citrus.  相似文献   

16.
Rehmannia glutinosa Libosch. is a medicinal plant cultivated at a commercial scale in China. However, replanting problems result in a severe decline in both the biomass and quality of its roots, which are of greatest medicinal value. This study attempted to remediate the replant soil using spent Pleurotus eryngii Quel substrate for alleviating this issue, and to investigate the underlying mechanisms. Results showed that R. glutinosa grew successfully in fresh soil and remedial replant soil, while no roots were harvested in the unremedied replant soil. Overall, the nutritional status in the remedial soil was higher than that of the unremedied and fresh soil, while the concentration of allelopathic phenolic acids was lower. When planted in unremedied soil, the growth of five plant pathogens was induced and one beneficial fungus was suppressed. When planted in remedied soil, four out of the five pathogens were suppressed, while two beneficial fungi were identified in the remedial soil. This study suggests that the spent P. eryngii substrate significantly alleviates the replant problem of R. glutinosa, and that the alleviatory function reflects a synergetic effect, including the supplementation of soil nutrition, the degradation of allelochemicals, and the remediation of unbalanced microbial community.  相似文献   

17.
Zhang  Qishui 《Plant and Soil》1997,191(2):205-212
Effects of soil extracts from repeated plantation woodlands of Chinese-fir on soil fungi growth, the activities of microbial communities, and rates of net soil nitrogen mineralization were investigated. Soil extracts from replanted woodlands significantly inhibited soil non-pathogenic fungi growth, reduced soil respiration activities, and net soil nitrogen mineralization rates. However, soil extracts from replanted woodland increased the growth of pathogenic fungi. The combination of soil extracts and pathogenic fungi did not significantly reduce the growth of Chinese-fir seedlings when compared to the soil extracts alone. The combination of soil extracts with pathogenic and non-pathogenic fungi significantly increased the growth of Chinese-fir seedlings when compared to the combination of soil extracts and pathogenic fungi. The results suggest that the allelochemicals from soil extracts, rather than pathogenic fungi, are the key factor regulating the productivity and nitrogen cycling in repeated plantation woodlands.  相似文献   

18.
In pot experiments cuttings of grapevine rootstock cultivar 5C were grown on a soil from a grapevine nursery affected with replant disease (replant soil) and on a similar soil that had not been planted with grapevines before (non-replant soil). Plants were also inoculated with the vesicular-arbuscular (VA) mycorrhizal fungus,Glomus mosseae, or left without mycorrhizal fungus inoculation. Shoot and root growth, mycorrhization of roots and numbers of total aerobic bacteria and fluorescent pseudomonads on the rhizoplane of grapevines were determined at several sampling dates. On replant soil, numbers of fluorescent pseudomonads on the rhizoplane were higher compared to non-replant soil, before differences in shoot and root weight between replant and non-replant soil occurred. Without inoculation withG. mosseae, the mycorrhization of roots was much lower on replant soil (13%) than on non-replant soil (51%). On replant soil, inoculation withG. mosseae increased mycorrhization to 39% and increased shoot length, leaf area and shoot weight. The beneficial effect of VA-fungus inoculation on replant soil was not due to increased nutrient concentrations in leaves. On replant soil, the inoculation withG. mosseae reduced the number of fluorescent pseudomonads on rhizoplane of grapevine, while the numbers of total aerobic bacteria were not influenced by inoculation withG. mosseae. These results suggest a direct or indirect role of fluorescent pseudomonads in replant disease of grapevine.  相似文献   

19.
Identification of Phytophthora citrophthora with Cloned DNA Probes   总被引:4,自引:4,他引:0       下载免费PDF全文
Two different DNA fragments, one of 2.9 kilobases and the other of 5.1 kilobases, were cloned from Phytophthora citrophthora and showed no homology with DNA from plants and other related fungi. These DNA probes hybridized with DNA from 12 different P. citrophthora isolates obtained from a variety of hosts but did not hybridize with DNA from 6 P. citrophthora isolates obtained from cacao. Southern blot analysis revealed that the probes contained repetitive DNA, and restriction fragment length polymorphisms were identified among several P. citrophthora isolates. Of the isolates tested, two major groups were observed whose genetic similarity correlated with geographical distribution. One of the DNA probes was used to detect P. citrophthora growing from infected citrus roots incubated on semiselective medium. P. citrophthora was not detected by a hybridization assay of total DNA extracted directly from infected roots.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号