首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eye of the locust was shown to distinguish between vertical and horizontal alignments of narrow slit targets, and responded more strongly with horizontal alignments. In all cases the response increased as slit width decreased, to a limit of about 0.1 degrees. Similarly the eye responded more strongly to gratings in horizontal alignment, with a peak in response close to a spatial frequency of 3 cyc/deg. These results are discussed and comparisons are made with previous findings on insect and other eyes.  相似文献   

2.
Attention is drawn to the fact that under normal visual conditions the sensitivity of the receptor units of the visual system are subject to spatial and temporal variations, and that consequently in performing pattern recognition the visual cortex has to discriminate between external luminance structure and internal sensitivity structure. It is suggested that eye movements are the method by which this discrimination is performed. In a simplified model analysis it is shown that eye movements are a suitable mechanism for this discrimination. Implications of this model for detection threshold and stabilized retinal images are discussed. A new interpretation of the adaptation to sine wave grids is given.  相似文献   

3.
Self-motion disturbs the stability of retinal images by inducing optic flow. Objects of interest need to be fixated or tracked, yet these eye movements can infringe on the experienced retinal flow that is important for visual navigation. Separating the components of optic flow caused by an eye movement from those due to self-motion, as well as using optic flow for visual navigation while simultaneously maintaining visual acuity on near targets, represent key challenges for the visual system. Here we summarize recent advances in our understanding of how the visuomotor and vestibulomotor systems function and interact, given the complex task of compensating for instabilities of retinal images, which typically vary as a function of retinal location and differ for each eye.  相似文献   

4.
Otolith function is directly affected by weightlessness at the time of movement in outer space, and changes occur in the mode of response. It has been known for some time that such changes occur in the posture and gait of astronauts just after they return from a trip into space. It is thought that the cause of these changes is disuse atrophy of the antigravity muscles. However, in the present study, experimental subjects underwent repeated linear acceleration loading over a long period of time, and instability of the head and a decrease in posture control, especially in relation to the gait, were observed for the first time. To date, it has been said that the otolith function has a close relationship with ocular counter rolling. However, when the otolith organ was stimulated, the response was seen to be head instability and an irregular effect on the gait. It is surmised that these findings will facilitate future research into the otolith function under gravity-free conditions.  相似文献   

5.
6.

This study analyzed the characteristics of pursuit and assessed the influence of prior and visual information on eye velocity and saccades in amblyopic and control children, in comparison to adults. Eye movements of 41 children (21 amblyopes and 20 controls) were compared to eye movements of 55 adults (18 amblyopes and 37 controls). Participants were asked to pursue a target moving at a constant velocity. The target was either a ‘standard’ target, with a uniform color intensity, or a ‘noisy’ target, with blurry edges, to mimic the blurriness of an amblyopic eye. Analysis of pursuit patterns showed that the onset was delayed, and the gain was decreased in control children with a noisy target in comparison to amblyopic or control children with a standard target. Furthermore, a significant effect of prior and visual information on pursuit velocity and saccades was found across all participants. Moreover, the modulation of the effect of visual information on the pursuit velocity by group, that is amblyopes or controls with a standard target, and controls with a noisy target, was more limited in children. In other words, the effect of visual information was higher in control adults with a standard target compared to control children with the same target. However, in the case of a blurry target, either in control participants with a noisy target or in amblyopic participants with a standard target, the effect of visual information was larger in children.

  相似文献   

7.
ABSTRACT.
  • 1 Directional movement by foraging honey bees (Apis mellifera L.) was studied on several flower arrays. The most frequent move among equidistant flower stalks was straight ahead from stalk to stalk with frequencies decreasing for increasing turn angles. Turns to the left were about equal in frequency to turns to the right.
  • 2 Bees maintained directionality when moving from flower stalks that had been rotated 90° counterclockwise while the bee was on the stalk (no difference between moves from rotated stalks and unrotated controls). Thus, directionality is maintained by the bee and is not an artefact of flower distribution.
  • 3 Bees also maintained directionality when the entire array was rotated around the flower stalk the bee was on. Thus, bees use an external cue to orientate in a given direction rather than fixing on an inflorescence within the flower array.
  • 4 Bees foraging on very different flower arrays differed in patterns of directionality and in distances flown between flower stalks. Therefore, even though bees maintain directionality using external cues, flower distribution can nevertheless influence flight patterns.
  相似文献   

8.
The effect of different wind speeds on take-off and flight orientation of the sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae), was studied in the presence of a green visual stimulus which reflected 550 ± 10 nm light, or a white stimulus of the same intensity. When the white light was present, take-off was negatively correlated with wind speed. Analysis of the flight tracks of whiteflies in 0, 15 and 30 cm/s wind with the white light present showed that flight was not directed toward the stimulus in zero wind, and that insects were carried downwind as the wind increased. Net displacement downwind was significantly slower than the wind speed, indicating that B. tabaci can control its rate of displacement relative to its surroundings, and is not always passively transported by the wind. In the presence of the green visual stimulus, take-off and flight behaviour of B. tabaci was markedly different to that observed in the presence of the white light. Taking off was more likely and whiteflies made upwind orientated flights, landing on the illuminated section of the screen when it reflected green light. At all wind speeds tested, the mean ground speeds of B. tabaci were approximately 20 cm/s whether the insects were flying upwind or downwind. This uniformity of ground speed regardless of the changing effects of wind-induced drift in different directions strongly suggests that whiteflies actively control their ground speed using visual flow fields in a manner similar to all other flying insects examined thus far.  相似文献   

9.
This paper reviews some of the contributions that work in computational vision has made to the study of biological vision systems. We concentrate on two areas where there has been strong interaction between computational and experimental studies: the use of binocular stereo to recover the distances to surfaces in space, and the recovery of the three-dimensional shape of objects from relative motion in the image. With regard to stereo, we consider models proposed for solving the stereo correspondence problem, focussing on the way in which physical properties of the world constrain possible methods of solution. We also show how critical observations regarding human stereo vision have helped to shape these models. With regard to the recovery of structure from motion, we focus on how the constraint of object rigidity has been used in computational models of this process.  相似文献   

10.
11.
Directional responses to visual stimuli were analysed with the aid of a minimal computational model. The model is based upon arrays of motion sensors whose receptive fields are modified versions of those (difference-of-Gaussians) used to describe mechanisms in popular spatial vision models. In the model antagonistic influences on each motion sensor were assumed to: (1) arise from spatially non-aligned areas of the retina; and (2) to follow different time courses. Implications of the model were explored with simulations, and parallel psychophysical data were collected. Visual behaviours chosen for relatively detailed analysis were judgments of the temporal order of onset of two spatially displaced stimuli and motion aftereffects generated with discontinuously moving, sine-wave gratings.  相似文献   

12.
Survival and reproductive success hinge on the perception ofenvironmental stimuli. In this regard, foraging efficiency dependson discerning predictive signals in food. A widespread occurrenceof ethanol in fruits indicates a sustained historical exposureof frugivores to this compound. Accordingly, Dudley (2000, Quart.Rev. Biol. 75:3–15) proposed that ethanol could representa prominent sensory cue to primates because of direct and indirectlyassociated caloric and physiological rewards. However, littleis known regarding the extent to which ethanol correlates withsuch parameters. This information is essential to estimatingthe importance of detecting and detoxifying ethanol in fruits.Here I present a preliminary analysis of fruits from SoutheastAsia; low levels of ethanol were present in fruits of all developmentalstages (range: 0.005–0.48%). Moreover, ethanol correlatedpositively with concentrations of soluble sugars, suggestingthat it could be a valuable foraging cue. Recent findings onthe sensitivity of primate olfaction and gustation to ethanolare consistent with this notion. However, when primates smellfruits deliberately, it often occurs together with digital and/ordental evaluation of texture. Here I show that softening texturealso characterizes the fruit ripening process, and that coloris of ambiguous importance to primates possessing trichromaticvision. I discuss the relevance of these findings to the originsof primates and the ecology of key sensory systems and deducethat detecting and selecting fruits on the basis of cues otherthan color is a persistent theme in primate evolution. Ethanolhas likely played a significant and underestimated role in theregulation of primate foraging behavior.  相似文献   

13.
14.
V M Gusev  N F Podvigin 《Biofizika》1986,31(2):309-312
Within the scope of the concepts on the look control mechanism, i. e. the system of interrelated control of head and eye movements a mathematical model is considered which described the control system over eye involuntary movements with quadratic criterion of its work quality. Assuming the optimal character of the control system under study and taking into account the experimental data on the eye movements parameters the relationship between the parameters of the criterion introduced and retinotopic relation of a locus of lateral geniculate is estimated.  相似文献   

15.
The comparison of EEG spatial organization between groups of 23 students of graphic arts department ("professional" subjects) and 39 subjects of another specialization ("non-professional" subjects) was made in order to find EEG correlates of visual imagery experience. Changes in the spatial organization of biopotentials (spatial synchronization and spatial disorder, spectral power and coherence) were analyzed while subjects mentally composed visual images from two simple elements, right angle and oblique line. The total number of elements presented for the image composition increased with each subsequent task (in total, four tasks were presented) from the number adequate to simultaneous perception and conscious processing (less than 7 +/- 2) to a much higher number. Intergroup differences, especially, in the degree of the spatial disorder (non-linear processes), were most evident under conditions when the subjects operated with a greater number of elements (tasks 3 and 4). This parameter increased more rapidly in "professionals" than in "non-professionals". These changes were most pronounced in the right anterior cortex. In "non-professional" subjects, spatial synchronization (linear processes) increased in the right posterior area. In "professional" subjects, coherence and spectral power increased in a greater number of narrow EEG frequency subbands than in "non-professional" subjects. The findings suggest that the imagery performance in subjects with visual imagery experience involves complicated neurodynamic processes such as non-linear dynamics and numerous EEG spatial resonance systems.  相似文献   

16.
We present a procedure that optimally adjusts specified parameters of a mathematical model to describe a set of measured data. The technique integrates a dynamic systems-simulation language with a robust algorithm for nonlinear parameter estimation, and it can be implemented on a microcomputer. Sensitivity functions are generated that indicate how the operation of the model is affected by each updated parameter. This procedure offers a greater resolution of optimal parameter values than other, less rigorous methods. To illustrate this technique we have applied it to the model of human smooth pursuit eye movements proposed by D.A. Robinson and colleagues (1986).  相似文献   

17.
We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks.  相似文献   

18.
19.
20.

Background

Impairment of spatiotemporal visual processing in amblyopia has been studied extensively, but its effects on visuomotor tasks have rarely been examined. Here, we investigate how visual deficits in amblyopia affect motor planning and online control of visually-guided, unconstrained reaching movements.

Methods

Thirteen patients with mild amblyopia, 13 with severe amblyopia and 13 visually-normal participants were recruited. Participants reached and touched a visual target during binocular and monocular viewing. Motor planning was assessed by examining spatial variability of the trajectory at 50–100 ms after movement onset. Online control was assessed by examining the endpoint variability and by calculating the coefficient of determination (R2) which correlates the spatial position of the limb during the movement to endpoint position.

Results

Patients with amblyopia had reduced precision of the motor plan in all viewing conditions as evidenced by increased variability of the reach early in the trajectory. Endpoint precision was comparable between patients with mild amblyopia and control participants. Patients with severe amblyopia had reduced endpoint precision along azimuth and elevation during amblyopic eye viewing only, and along the depth axis in all viewing conditions. In addition, they had significantly higher R2 values at 70% of movement time along the elevation and depth axes during amblyopic eye viewing.

Conclusion

Sensory uncertainty due to amblyopia leads to reduced precision of the motor plan. The ability to implement online corrections depends on the severity of the visual deficit, viewing condition, and the axis of the reaching movement. Patients with mild amblyopia used online control effectively to compensate for the reduced precision of the motor plan. In contrast, patients with severe amblyopia were not able to use online control as effectively to amend the limb trajectory especially along the depth axis, which could be due to their abnormal stereopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号