首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ruminant animals are carriers of Escherichia coli O157:H7, and the transmission of E. coli O157:H7 from cattle to the environment and to humans is a concern. It is unclear if diet can influence the survivability of E. coli O157:H7 in the gastrointestinal system or in feces in the environment. Feces from cattle fed bromegrass hay or corn silage diets were inoculated with E. coli O157:H7, and the survival of this pathogen was analyzed. When animals consumed bromegrass hay for <1 month, viable E. coli O157:H7 was not recovered after 28 days postinoculation, but when animals consumed the diet for >1 month, E. coli O157:H7 cells were recovered for >120 days. Viable E. coli O157:H7 cells in feces from animals fed corn silage were detected until day 45 and differed little with the time on the diet. To determine if forage phenolic acids affected the viability of E. coli O157:H7, feces from animals fed corn silage or cracked corn were amended with common forage phenolic acids. When 0.5% trans-cinnamic acid or 0.5% para-coumaric acid was added to feces from silage-fed animals, the E. coli O157:H7 death rate was increased significantly (17-fold and 23-fold, respectively) compared to that with no addition. In feces from animals fed cracked corn, E. coli O157:H7 death rates were increased significantly with the addition of 0.1% and 0.5% trans-cinnamic acid (7- and 13-fold), 0.1% and 0.5% p-coumaric acid (3- and 8-fold), and 0.5% ferulic acid (3-fold). These data suggest that phenolic acids common to forage plants can decrease viable counts of E. coli O157:H7 shed in feces.  相似文献   

2.
Ruminant animals are carriers of Escherichia coli O157:H7, and the transmission of E. coli O157:H7 from cattle to the environment and to humans is a concern. It is unclear if diet can influence the survivability of E. coli O157:H7 in the gastrointestinal system or in feces in the environment. Feces from cattle fed bromegrass hay or corn silage diets were inoculated with E. coli O157:H7, and the survival of this pathogen was analyzed. When animals consumed bromegrass hay for <1 month, viable E. coli O157:H7 was not recovered after 28 days postinoculation, but when animals consumed the diet for >1 month, E. coli O157:H7 cells were recovered for >120 days. Viable E. coli O157:H7 cells in feces from animals fed corn silage were detected until day 45 and differed little with the time on the diet. To determine if forage phenolic acids affected the viability of E. coli O157:H7, feces from animals fed corn silage or cracked corn were amended with common forage phenolic acids. When 0.5% trans-cinnamic acid or 0.5% para-coumaric acid was added to feces from silage-fed animals, the E. coli O157:H7 death rate was increased significantly (17-fold and 23-fold, respectively) compared to that with no addition. In feces from animals fed cracked corn, E. coli O157:H7 death rates were increased significantly with the addition of 0.1% and 0.5% trans-cinnamic acid (7- and 13-fold), 0.1% and 0.5% p-coumaric acid (3- and 8-fold), and 0.5% ferulic acid (3-fold). These data suggest that phenolic acids common to forage plants can decrease viable counts of E. coli O157:H7 shed in feces.  相似文献   

3.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

4.
AIMS: To assess whether the persistence of Escherichia coli O157:H7 in soil amended with cattle slurry and ovine stomach content waste is affected by the presence of a maize rhizosphere. METHODS AND RESULTS: Cattle slurry and ovine stomach content waste were inoculated with E. coli O157:H7. Wastes were then applied to soil cores with and without established maize plants. The pathogen survived in soil for over 5 weeks, although at significantly greater numbers in soil receiving stomach content waste in comparison to cattle slurry. Persistence of the pathogen in soil was unaffected by the presence of a rhizosphere. CONCLUSIONS: Other factors may be more influential in regulating E. coli O157:H7 persistence in waste-amended soil than the presence or absence of a rhizosphere; however, waste type did have significant affect on the survival of E. coli O157:H7 in such soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Escherichia coli O157:H7 can be present within animal-derived organic wastes that are routinely spread on land. Introduced measures with regards to such waste disposal may decrease exposure to the organism; however, the persistence of E. coli O157:H7 for considerable periods in waste-amended soil may still pose some risk for both human and animal infection. This study has shown that whilst survival of E. coli O157:H7 in waste-amended soil is not significantly affected by the presence or absence of a maize rhizosphere; it may vary significantly with waste type. This may have implications for land and waste management.  相似文献   

5.
The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 x 10(1) to 1.5 x 10(5) CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.  相似文献   

6.
AIM: To determine the persistence of Escherichia coli O157 in contrasting organic wastes spread to land and to assess the potential environmental risk associated with the disposal of these wastes to land. METHODS AND RESULTS: Twenty-seven organic wastes originating from slaughterhouses, wastewater treatment plants (raw and treated sewage), creameries and farms (bovine slurry), were inoculated with E. coli O157:H7 and incubated at 10 degrees C. Although pathogen numbers gradually declined in all the wastes, albeit at different rates even in the same waste type, E. coli O157:H7 was still viable in 77% of organic wastes tested after 2 months. CONCLUSIONS: Long-term storage of organic wastes led to a significant and gradual decline in E. coli O157:H7 numbers. Consequently, storage may be a useful means of reducing the pathogen load of wastes destined for land application. However, in most cases, long-term storage cannot be expected to completely eliminate E. coli O157:H7 from waste. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results indicate that current legislation may be insufficient to protect the environment from E. coli O157:H7 contamination from untreated wastes spread to land.  相似文献   

7.
The survival of Escherichia coli O157:H7 in feces from steers fed corn (CO) or barley (BA) was evaluated at -10, +4 and +22 degrees C. Fecal pats were inoculated with a four-strain mixture of nalidixic-acid resistant E. coli O157:H7 at two levels: 10(3) CFU g(-1) (low, L) and 105 CFU g(-1) (high, H). At -10 degrees C, duration of survival of E. coli O157:H7 was reduced (p < 0.05) in CO-L (35 days) compared to BA-L (49 days), likely due to the effects of fecal volatile fatty acids in combination with a fecal pH of <6.5. At 4 degrees C, E. coli O157:H7 was detected in BA-H, CO-H, CO-L and BA-L for 77, 77, 56 and 63 days, respectively, with no difference (p > 0.05) observed in the duration of survival or rate of decline of E. coli O157:H7 among treatments. Survival of E. coli O157:H7 was twice as likely (p < 0.05) at 22 degrees C than at 4 degrees C and -10 degrees C. While pH and dry matter content increased, and volatile fatty acid concentrations decreased over 84 days at all three temperatures, these changes were most pronounced at 22 degrees C. Survival of E. coli O157:H7 for extended periods of time in feces from both corn- and barley-fed animals was demonstrated, thus fecal material may serve as a vector for the transmission of the organism. The greater survival of E. coli O157:H7 at 22 degrees C suggests that temperature may play a role in the seasonality of transmission and prevalence of this bacterium in feedlot cattle. The reported greater prevalence of E. coli O157:H7 in cattle fed barley as compared to those fed corn does not appear to be related to elevated risk of transmission arising from differential survival of the bacterium in feces.  相似文献   

8.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

9.
AIMS: This investigation was conducted to determine the survival of a naturally occurring Escherichia coli O157:H7 in garden soil linked to a sporadic case of E. coli O157 infection in Minnesota. METHODS AND RESULTS: The presence and viability of E. coli O157:H7 was monitored in manure-contaminated garden soil for several weeks. Bacterial isolates were characterized using PCR and pulsed-field gel electrophoresis (PFGE). Isolates obtained from the patient and the garden plots during this investigation had indistinguishable PFGE patterns and had the same virulence factors (stx1, stx2, eaeA, ehxA). The E. coli O157:H7 levels obtained from the garden plots declined gradually for a period of 2 months, and on day 69 only one garden plot of four had detectable levels of pathogen. All plots were negative on day 92. The rate of decline in the soil samples stored at 4 degrees C was faster compared with soil samples that remained in ambient conditions, and in refrigerated storage E. coli O157:H7 could not be detected after 10 days. CONCLUSIONS: E. coli O157:H7 strains can survive on manure-amended soil for more than 2 months, and this survival could be reduced by low temperature. SIGNIFICANCE AND IMPACT OF THE STUDY: This is one of the few reports that have investigated the survival of a proven virulent strain in naturally contaminated soil samples. This case stresses the importance of avoiding the use of raw cattle manure to amend soil for cultivation of foods, including soils in residential garden plots.  相似文献   

10.
Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (10(10) CFU/animal) made resistant to nalidixic acid (Nal(r)). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nal(r) E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nal(r) E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.  相似文献   

11.
AIMS: The behaviour of Escherichia coli O157:H7 was studied during the manufacture and ripening of a smear-ripened cheese produced from raw milk. METHODS AND RESULTS: Cheese was manufactured on a laboratory scale using milk (20 l) inoculated with E. coli O157:H7, and enumeration was carried out using CT-SMAC. From an initial level of 1.52 +/- 0.03 log cfu ml-1 in the milk (34 +/- 2 cfu ml-1), the numbers increased to 3.4 +/- 0.05 log cfu g-1 in the cheese at day 1. During ripening, the numbers decreased to <1 cfu g-1 and <10 cfu g-1 in the rind and core, respectively, after 21 days, although viable cells were detected by enrichment after 90 days. The presence of E. coli O157:H7 in the cheese was confirmed by latex agglutination and by multiplex PCR. CONCLUSION: The results indicate that the manufacturing procedure encouraged substantial growth of E. coli O157:H7 to levels that permitted survival during ripening and extended storage. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of low numbers of E. coli O157:H7 in milk, destined for raw milk cheese manufacture, could constitute a threat to the consumer.  相似文献   

12.
Compost made from livestock manure is commonly used as a crop fertilizer and serves as a possible vehicle for the transmission of Escherichia coli O157:H7 to fresh produce. In this study, we hypothesized that the indigenous microbial communities present in composts adversely affects the survival of E. coli O157:H7. Escherichia coli O157:H7 was spiked into compost slurry and incubated at 25 °C. Escherichia coli O157:H7 exhibited a c. 4 log(10) reduction over 16 days. When compost was supplemented with the eukaryotic inhibitor cycloheximide, there was a minimal decrease in E. coli O157:H7 counts over the same time period. Analysis of microbial communities present in the compost with denaturing gradient gel electrophoresis (DGGE) suggested minor differences in the fungal communities present in cycloheximide-treated compost, compared with untreated compost over a period of 12 days at 25 °C. However, the DGGE profiles of protists showed drastic differences in community complexity. Clone library sequence analysis of protist populations revealed significantly different species composition between treatment and control samples at different time points. This suggests that predation of E. coli O157:H7 by protists might be a potential mechanism for reducing E. coli O157:H7 in compost materials.  相似文献   

13.
AIMS: To determine if thyroid function affects faecal shedding of Escherichia coli O157:H7. METHODS AND RESULTS: Eight yearling cattle (n = 4 per treatment group), previously identified as shedding E. coli O157:H7, received either 0 or 10 mg 6-N-propyl-2-thiouracil (PTU) kg(-1) BW day(-1) for 14 days to reduce serum concentrations of the thyroid hormones, T(3) and T(4). Animals were monitored daily for changes in faecal shedding of E. coli O157:H7 and E. coli (EC) for the 14-day treatment period and an additional 7 days post-treatment. Body weight was measured weekly and serum concentrations of T(3) and T(4) were determined every 3 days. No differences in faecal shedding of E. coli O157:H7 were observed during the 14-day treatment period. However, compared with control animals, a greater percentage of PTU-treated cattle ejected E. coli O157:H7 on day 16 (100 vs 25%) and 18 (75 vs 0%) of the post-treatment period. Serum T(3) was lower in PTU-treated cattle during the 14-day treatment period and greater on day 18 of the post-treatment period. CONCLUSION: Cattle with chemically altered thyroid hormones had similar shedding patterns of faecal E. coli O157:H7 and EC during the 14-day treatment period. However, faecal shedding of E. coli O157:H7 tended to be greater, and serum concentrations of T(3), were greater for PTU-treated cattle immediately following the termination of PTU treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Short-term chemical inhibition of thyroid hormones had minimal effects on faecal shedding of E. coli O157:H7 in naturally infected cattle. However, a hyperthyroid state as observed postdosing might play a role in the seasonal shedding of E. coli O157:H7 in cattle.  相似文献   

14.
AIMS: The effect of a lactic acid producing bacterial (LAB) inoculant on the elimination of Escherichia coli O157:H7 from barley forage was assessed. METHODS AND RESULTS: Triplicate mini-silos were prepared for four treatments and six sampling times (1, 3, 7, 15, 30 and 42 d post-ensiling). The treatments were (i) 10(5) cfu g(-1) Pediococcus pentosaceus and Propionibacterium jenzenii (P2); (ii) 10(5) cfu g(-1) E. coli O157:H7 strain 3081 and 10(5) cfu g(-1) E. coli Biotype 1 strains 719IE10, 719IE14 and 614ME49 (EC); (iii) P2 + EC; and (iv) the control (sterile distilled water). Triplicate mini-silos were opened at each sampling time for pH, volatile fatty acid (VFA) and lactate determinations and E. coli, E. coli O157:H7 and LAB were enumerated. On d 3 and 7, numbers of E. coli O157:H7 in P2 + EC were significantly lower than in EC (P < 0;05). Escherichia coli O157:H7 was not detected in P2 + EC and EC at 7 and 15 d post-ensiling, respectively. On d 15 through 42, E. coli Biotype 1 was not detected in P2 + EC or EC. Populations of LAB were higher in P2 and P2 + EC than in the control and EC on d 3 and 7 (P < 0.05). After 3 d of ensiling, lactate levels were higher (P < 0.05) and pH was lower (P < 0.05) in P2 and P2 + EC as compared to the control and EC. Bacteriocins of P2 were not found to be inhibitory to E. coli O157:H7 using the agar-spot procedure. Escherichia coli O157:H7 inoculated into the control silage at a level of 10(3) cfu g(-1) and exposed to aerobic conditions at 22 degrees C was not detected after 1 d and remained undetectable for the 28 d exposure period. CONCLUSIONS: Silage inoculant P2 increased lactate levels and decreased pH more rapidly during ensiling, which appeared to hasten the elimination of E. coli O157:H7 from the silage. SIGNIFICANCE AND IMPACT OF THE STUDY: Results emphasize the importance of adequate ensiling since E. coli O157:H7 may be maintained and spread among cattle through feed.  相似文献   

15.
AIMS: The study aimed to investigate the survival characteristics of Escherichia coli O157:H7 in farm water (FW), and in sterile distilled municipal water (SDW), stored outdoors under field conditions, with or without the addition of faeces (1% w/v), in a farmyard shed and the laboratory at 15 degrees C. METHODS AND RESULTS: Water samples were inoculated with E. coli O157:H7 at 10(3) and 10(6) ml(-1), and sampled over a 31-day period. In FW stored outdoors in a field, E. coli O157:H7 survived for 14 days at temperatures <15 degrees C, at both inoculation levels, while in the laboratory at 15 degrees C, the organism was still detectable at low levels (<1 log10 cfu ml(-1)) after 31 days. The addition of bovine faeces to water outdoors (1% w/v) resulted in survival for 24 days. In SDW inoculated at 10(6) ml(-1) and stored in the laboratory (15 degrees C), only a 2.5 log reduction was observed after 31 days, while the organism could not be detected after 17 days in the field. Preliminary screening of water samples stored outdoors isolated a bacterium which exhibited antimicrobial activity towards E. coli O157:H7. CONCLUSIONS: The survival of E. coli O157:H7 observed in this study illustrates the potential of farm water to act as a vehicle in the transfer of the organism across a herd. SIGNIFICANCE AND IMPACT OF THE STUDY: The difficulty in extrapolating results from controlled laboratory situations to on-farm conditions is also highlighted in this study.  相似文献   

16.
AIM: This study was carried out to determine the survival of Escherichia coli O157:H7 and subsequent shelf life of beef subjected to subatmospheric steam at differing temperatures. METHODS AND RESULTS: A specifically built, laboratory scale decontamination apparatus was used in decontamination trials to examine the effect of condensing steam at differing subatmospheric pressures on the survival of E. coli O157:H7 on meat. Beef slices were inoculated with a nontoxigenic E. coli O157:H7 strain and subjected to condensing steam at temperatures of 55, 65 and 75 degrees C. Following treatment, the decontaminated meat was packaged and stored in air or under vacuum at temperatures of 10 or 0 degrees C for up to 42 days. Microbiological analysis of the decontaminated and a control product (not subjected to any heat treatment) was carried out at regular intervals over the storage time of the product. Overall, significant reductions (ca 1.5 log(10) CFU cm(-2)) in pathogen numbers were observed at a steam treatment temperature of 75 degrees C, however, postprocess storage conditions were important in ensuring no re-growth of the pathogen and this was best achieved by storage under vacuum at 0 degrees C. CONCLUSIONS: Steam had a significant impact in reducing E. coli O157:H7 populations, but storage conditions post-treatment were important for ensuring inhibition of the pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicated that subatmospheric steam could have significant application in the decontamination of meat primals postfabrication, immediately prior to packaging thus ensuring a safer product for consumers.  相似文献   

17.
18.
AIMS: This study was conducted to evaluate the effect of supplementing barley- or corn-based diets with canola oil on faecal shedding of Escherichia coli O157:H7 by experimentally inoculated feedlot cattle. METHODS AND RESULTS: Four groups of yearling steers fed on barley- or corn-based feedlot diets containing 0% (BA; CO) or 6% canola oil (BA-O; CO-O) were inoculated with 10(10) CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7. The inoculated strains were tracked in oral (mouth swab) and environmental (water, water bowl interface, feed, faecal pat) samples by enrichment and immunomagnetic separation (IMS) for 12 weeks, and in rectally collected faecal samples for 23 weeks (enumeration by dilution plating for 12 weeks; detection by IMS for a further 11 weeks). Levels of E. coli O157:H7 shed in faecal samples over the course of the enumeration period were similar (P = 0.14) among treatments. Disappearance of the inoculated strains from faeces was more rapid (P = 0.009) with barley than with corn, but shedding levels at the end of the enumeration period were similar (P = 0.21) across grain types. Canola oil supplementation did not affect (P = 0.71) the rate of disappearance of E. coli O157:H7 from faeces. The numbers of steers culture positive for E. coli O157:H7 during the enumeration period were similar (P = 0.57) among treatments. During the 11-week detection period, however, more (P < 0.001) steers were E. coli O157:H7-positive in the BA group (15/64) than in BA-O (two of 64), CO (two of 56), or CO-O (one of 56). The organism was present in two of 48 water samples (both CO-O), one of 48 water bowl swabs (BA-O), four of 48 feed samples (two of 12 BA; two of 12 CO-O), 30 of 48 pen floor faecal pat samples, and 296 of 540 mouth swabs (81/144 BA, 80/144 BA-O, 74/126 CO and 61/126 CO-O). CONCLUSION: Supplementing corn or barley-based diets with canola oil did not affect shedding of E. coli O157:H7 by feedlot cattle. SIGNIFICANCE AND IMPACT OF THE STUDY: High-shedding individuals (i.e. 'super shedders') may be responsible for disseminating E. coli O157:H7 among penmates. Faeces on pen floors appears to be a more significant source of infection than are feed or drinking water.  相似文献   

19.
Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (1010 CFU/animal) made resistant to nalidixic acid (Nalr). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nalr E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nalr E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.  相似文献   

20.
The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 × 101 to 1.5 × 105 CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号