首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
红树林湿地相手蟹科动物摄食生态研究进展   总被引:1,自引:1,他引:0  
陈顺洋  陈光程  陈彬  叶勇  马志远 《生态学报》2014,34(19):5349-5359
相手蟹科物种是红树林湿地的主要底栖动物类群,在生态系统中起着重要的作用。我国大陆地区目前已记录的相手蟹科物种数量为12种,低于其它红树林地区(国内常用的采样方法会造成螃蟹物种数量和密度的低估),其中褶痕相手蟹(Sesarma plicata)、无齿相手蟹(S.deaani)和双齿相手蟹(S.bidens)等是常见种。红树植物叶片是相手蟹科动物的主要食物来源,相手蟹科动物通过地表摄食和洞穴贮存的形为消耗了大量的红树植物凋落叶,使这些凋落叶的有机质和营养元素得以保留在生态系统内,在凋落叶的周转和物质归还方面起到重要的作用。它们同时也摄食红树植物的繁殖体并且对不同物种的繁殖体具有摄食偏好,这可能对一些红树物种的植被更新能力和红树植被群落结构产生影响。相手蟹科动物对不同物种和不同状态的红树叶片也存在摄食偏好,通常对腐烂的叶片摄食偏好较强;螃蟹的摄食偏好与叶片的营养成份、粗纤维和单宁含量以及C/N比等性质有关;但在恶劣的野外环境下,螃蟹则会表现出随机性摄食。目前关于相手蟹科动物生态学作用的认识仍不充分,例如它们的种群大小和对凋落物的转化作用等,有待于进一步研究。  相似文献   

2.
Bright colours are a key visual signal in many animal communication systems. Here we examine the function of the blue-green facial bands found in two species of mangrove crabs, Perisesarma eumolpe (De Man) and P. indiarum (Tweedie). Food (mangrove leaves) deprivation and re-feeding experiments demonstrated that facial band brightness and saturation changed significantly with nutritional status. These results suggest that the colours are diet-derived and could be carotenoid-based. Manipulation of the facial bands had significant effects on inter-crab behaviour. When P. indiarum and P. eumolpe males were given a choice between a female with its facial band blacked out and a similar-sized control female with natural colour, they consistently chose the latter. In a resource holding potential (RHP) experiment, male crabs defending burrows responded differently to male con-specific intruders with blacked out facial bands compared to non-blacked out controls. Together, the results show that brightly coloured facial bands in P. eumolpe and P. indiarum are important for communication; either as a way to identify conspecifics, or to convey nutritional status and hence physical quality.  相似文献   

3.
The gastropod T. palustris is one of the major species responsible for leaf consumption and degration within the Indo-Pacific mangrove forests, and it strongly competes with herbivorous sesarmid crabs in consuming fallen leaves. This snail feeds at high and low tides and it is able to locate food items by means of chemical cues. The aim of this study was to assess the food preferences of T. palustris and to define its feeding strategies at low and high tides, by conducting field trials on water-borne mediated food location at high tide, grazing rate and the chemical attraction exerted by different mangrove leaves. The results showed that T. palustris was able to perceive underwater grazed leaves. In addition, we demonstrated that T. palustris consumes all the mangrove species (preferentially the Rhizophoraceae leaves) but Xilocarpus granatum. Moreover, this snail is differentially attracted to different mangrove species: the major attractive power is wielded by the rhizophoracean species and Pemphis acidula, while X. granatum does not attract this snail at all. The efficacy and adaptive value of a chemically mediated food searching strategies is unquestionable since by using this ability T. palustris can locate and reach the leaves it preferentially consumes. Moreover, T. palustris is the only macrobenthic species of East Africa mangroves able to search, detect and consume mangrove leaves at both high and low tides. Such an expanded feeding window permits T. palustris to occupy temporal niches left empty by the sesarmid crabs.  相似文献   

4.
Victory or triumph display is a post‐contest signal, performed only by winners and not by losers. While much is unknown about its function, there is mounting evidence that victory displays are widespread among animals. However, evidence remains anecdotal in crabs. Sesarmid crabs belonging to the genera Parasesarma and Perisesarma are known to have characteristic stridulatory structures on their chelipeds. In Perisesarma eumolpe, a mangrove crab, stridulation has been anecdotally purported as a triumph display. We examined whether stridulation in P. eumolpe is a victory display and the factors affecting it by staging 17 contest trials among males and investigating the factors influencing stridulations and fight outcome in 55 fights. Using generalised linear mixed‐effects models, we find that stridulations were generally performed by winners and after fights, especially when the fights were intense. In addition, stridulation was only observed in the context of a contest, never before or outside of it. Stridulation in P. eumolpe is likely a victory display, and, unlike other forms of victory display described for other species, it appears exclusively used for asserting victory.  相似文献   

5.
Sesarmid crabs dominate Indo West-Pacific mangroves, and consume large amounts of mangrove litter. This is surprising, since mangrove leaves have high tannin contents and C/N ratios that far exceed 17, normally taken as the maximum for sustainable animal nutrition. This paradox has led to the hitherto untested hypothesis that crabs let leaves age in burrows before consumption, thereby reducing tannin content and C/N ratio. We excavated burrows of Neosarmatium meinerti within high-shore Avicennia marina mangroves, and investigated whether burrow leaves had C, N or C/N values significantly different from those of senescent leaves. Leaves were found in <45% of burrows, mostly only as small fragments, and N concentrations and C/N ratios of burrow leaves never varied significantly from senescent leaves. The leaf-ageing hypothesis was therefore not supported. In the field N. meinerti and Sesarma guttatum fed on sediment in 76% and 66-69% of observations, respectively, and on leaves in <10% of observations. Sediments from two A. marina mangroves had a mean C/N ratio of 19.6. Our results, and the literature, show that mangrove leaves are unlikely to fulfil the N requirements of crabs, whether or not leaf ageing takes place. Sediment detritus could be a richer source of N, as shown by lower C/N ratios and regular ingestion by crabs. By fragmenting leaves crabs may be elevating the nutritional quality of the substrate detritus.  相似文献   

6.
Summary Measurements of litter fall and litter removal by crabs, in conjunction with estimates of litter decay by microbes and tidal export of litter from three high-intertidal mangrove forests were made during a year-long study in tropical northeastern Australia. In forests dominated by Ceriops tagal and Bruguiera exaristata, litter standing stocks remained low on the forest floor (mean 6 g·m-2), although litter fall was high; 822 and 1022 g·m-2·y-1, respectively. Sesarmid crabs removed 580 (Ceriops) and 803 (Bruguiera) g·m-2·y-1, or 71 and 79%, of the total annual litter fall from the forest floor. Relative to the rate of litter removal by crabs, microbial turnover of whole, unshredded litter was insignificant, accounting for <1% of annual litter fall. Export of litter by tides was estimated to remove 194 (Ceriops) and 252 (Bruguiera) g·m-2·y-1 or 24 and 25% of annual litter fall. In a forest dominated by Avicenniamarina, in which an ocypodid crab was more abundant than sesarmids, litter standing stocks were higher (mean 84 g·m-2) and crabs removed less litter; 173 g·m-2·y-1 or 33% of the annual litter fall of 519 g·m-2·y-1. Microbial turnover of intact litter was more important in the Avicennia forest (168 g·m-2·y-1 or 32% of annual litter fall), and tides exported 107 g·m-2·y-1 or 21% of litter production. In areas where sesarmid crabs were absent or rare in Ceriops forests, there were significantly higher standing stocks of litter and slower rates of leaf removal. Taking into account the probable assimilation efficiencies of sesarmid crabs feeding on mangrove leaves, we estimate that in Ceriops and Bruguiera forests leaf processing by crabs turns litter over at >75 times the rate of microbial decay alone, thus facilitating the high sediment bacterial productivity in these forests. The importance of litter processing by crabs increases with height in the intertidal in tropical Australia, in contrast to New World mangrove forests, where the reverse is true.Contribution No. 445 from the Australian Institute of Marine Science  相似文献   

7.
G. Naidoo 《Aquatic Botany》1985,22(2):133-143
Dispersal units of Avicennia marina (Forsk.) Vierh., Rhizophora mucronata Lam. and Bruguiera gymnorrhiza (L.) Lam. were cultivated in mangrove sediment under greenhouse conditions. After 7 months plants were subjected to the following waterlogging and salinity treatments for 60 days: drained non-saline, drained saline, waterlogged non-saline and waterlogged saline. Measurements were made of stomatal resistance (rs), tissue water potentials, relative water content, and the concentration of Na, K, Ca and Mg in plant organs. Measurements were made 4 days before the termination of waterlogging and continued for 12 days thereafter. Generally, the highest stomatal resistance occurred in the waterlogged saline treatments and the least stomatal resistance occurred in the drained non-saline treatments. Water potentials were usually lower in the saline treatments than in the non-saline treatments. Depression in water potential was greatest in Avicennia and least in Bruguiera. In all 3 species, the concentration of cations was high in the roots. Salinity had greater effects on the concentration of ions in Avicennia than in Rhizophora or Bruguiera. The low stomatal resistance, low tissue water potentials, high relative water content and high tissue cation concentration in Avicennia suggest that it is ideally suited as the pioneer in the mangrove association. Generally, Rhizophora was more tolerant of salinity than Bruguiera. The responses of the plants reveal the remarkable adaptability of mangroves to the saline environment. The adaptive features of each species determine its characteristic habitat in intertidal areas.  相似文献   

8.
The colour of the characteristic facial bands in the mangrove crabs Perisesarma eumolpe (De Man) and Perisesarma indiarum (Tweedie) were investigated in relation to species, sex and size. Quantitative red/blue/green (RBG) values extracted from close-up digital photographs of 27 P. indiarum and 48 P. eumolpe specimens revealed significant differences between species and sexes. Males of both species possessed facial bands characterized by a greater intensity of blue, whereas green was more pronounced in female facial bands. It is postulated that these colour differences play a role in intra-specific sexual recognition. There existed a significant positive relationship between size and the intensity of blue in the facial bands of females of both species, suggesting these traits function as an indicator of their maturity (and possibly body condition). In large males, facial band colours contrast strongly against the surrounding mudflat and may play an important role in conspecific signalling during territorial disputes or contests over access to females. Handling editor: K. Martens  相似文献   

9.
Summary Mangroves have similar xanthophyll cycle components/chlorophyll ratios [i.e. (V+A+Z)/chl] to other plant species. (V+A+Z)/chl ratios were sensitive to the light environment in which leaves grew, decreasing as light levels decreased over a vertical transect through a forest canopy. The (V+A+Z)/chl ratio also varied among species. However, in sun leaves over all species, the (V+A+Z)/chl ratios correlate with the proportion of leaf area displayed on a horizontal plane, which is determined by leaf angle. Thus, leaf angle and the xanthophyll cycle may both be important in providing protection from high light levels in mangrove species. A canopy survey assessed whether (V+A+Z)/chl ratios could be correlated with species dominance of exposed positions in forest canopies.Rhizophora mangroves, with near-vertical leaf angles, andBruguiera parviflora, with small, horizontal, xanthophyllrich leaves, dominated the canopy, whileB. gymnorrhiza, a species with large, horizontally arranged leaves, was less abundant at the top of the canopy. Thus, two different strategies for adapting to high solar radiation levels may exist in these species. The first strategy is avoidance through near vertical leaf angles, and the second is a large capacity to dissipate energy through zeaxanthin. The (V+A+Z)/chl ratio was also negatively correlated with the epoxidation state of the xanthophyll cycle pool (the proportion present as violaxanthin and half that present as antheraxanthin) at midday. This suggested that the requirement for dissipation of excess light (represented by the midday epoxidation state) may influence the (V+A+Z)/chl ratio.  相似文献   

10.
Soil conditions of mangrove forests in southern Japan were found to correlate largely with zonal distributions of the species.Kandelia candel grew in soils with low salinity and low pH,Avicennia marina, Rhizophora stylosa andSonneratia alba in soils with high salinity and high pH, andBruguiera gymnorrhiza in soil with a wide range of pH but limited range of salinity.Lumnitzera racemosa colonized soil with a wide range of pH and medium salinity. Seedlings ofKandelia candel, Bruguiera gymnorrhiza andRhizophora stylosa were planted in soils with differing salinity and pH. Optimum seedling growth ofKandelia, Bruguiera andRhizophora occurred when plants were cultivated in soils similar to those of their natural habitats, suggesting that growth of mangrove species and their zonal distributions were regulated by salinity and soil pH.  相似文献   

11.
Trophic interactions involving plants and animals in tropical mangrove forests have important controlling influences on several population, community and ecosystem-level processes. Insect herbivores remove up to 35% of leaf area from some mangrove tree species and can cause the death of seedlings. Leaf chemistry and toughness and soil nutrient status all appear to be important in explaining the between- and among-species variance in leaf damage. Insects also attack and damage, mainly by boring, a large proportion of mangrove seeds. Shadehouse experiments have shown that such post-dispersal predation can have a significant effect on seedling survival, growth and biomass allocation to leaves, stems and roots. Sesarmid crabs are also responsible for severe post-dispersal seed predation. In field trials, crabs consumed more than 70% of the seeds of five tree species. For four of these five species there was an inverse relationship between seed predation rate and the dominance of conspecific adult trees, while the within-site distribution pattern of one tree species appears to be partially controlled by crabs. The same crab species also consume 30–80% (depending on forest type and intertidal elevation), of the annual litter fall in mangrove forests and, thus, have an important role in controlling the rate of remineralization of detritus within forests and the export of particulate matter from the forests to other nearshore habitats. The other major component of litter in the forests is wood, which is broken down relatively rapidly by teredinid molluscs (shipworms). More than 90% of the weight loss from decomposing trunks of Rhizophora species during the first four years of decay is through ingestion by teredinids. The annual turnover of dead wood mass in Rhizophora forests is equivalent to that of the processing of leaf detritus by crabs. Because of the relatively low species richness of trees and consumers in tropical mangrove forests, they are likely to serve as productive sites for further investigations of the influence of plant-animal interactions on the dynamics of tropical forests.  相似文献   

12.
Structurally complex mangrove roots are thought to provide foraging habitat, predation refugia, and typhoon protection for resident fish, shrimp, and crabs. The spatially compact nature of Micronesian mangroves results in model ecosystems to test these ideas. Tidal creek nekton assemblages were compared among mangrove forests impacted by Typhoon Sudal and differing in stand structure. Structurally complex Rhizophora spp. stands were predicted to support higher densities and different communities of nekton and to provide greater protection from typhoons compared to less complex Sonneratia alba/Bruguiera gymnorrhiza stands. Lift net data revealed that structural complexity did not support greater nekton densities, but did support significantly different nekton assemblages. The cardinalfish Apogon ceramensis and goby Oxyurichthys lonchotus had significantly higher densities in S. alba/B. gymnorrhiza mangrove creeks, whereas the silverside Atherinomorus lacunosus and diogenid crabs had significantly higher densities in Rhizophora spp. creeks. Similar nekton densities 17 and 4 months after the typhoon in Rhizophora spp. creeks provided indirect evidence that structural complexity increased protection for resident nekton from disturbances. Findings indicate that studies of structural complexity and nekton densities may be better served when individual species are compared and that diverse mangrove tree assemblages will support diverse nekton assemblages that may be more resilient to disturbance.  相似文献   

13.
Species composition shifts in mangrove forests may alter organic matter dynamics. The purpose of this study was to predict the effect of species replacements among mangrove trees on organic matter dynamics in a mangrove forest on the island of Kosrae, Federated States of Micronesia. We were particularly interested in elements of the carbon cycle that affect peat accumulation rates, organic matter exports to the estuary and coral reef systems, and soil microbiology. We compared organic matter production and decomposition rates among three mangrove species that commonly grow in similar hydrogeomorphic settings: Rhizophora apiculata BL, which is selectively harvested; Bruguiera gymnorrhiza, which may gradually replace Rhizophora; and Sonneratia alba, which is producing few mature fruits. Sonneratia had significantly higher rates of root production (estimated with ingrowth chambers) than Bruguiera or Rhizophora. Sonneratia foliage had significantly faster decomposition rates and significantly lower lignin:nitrogen ratios than Bruguiera foliage. Live root mass was positively correlated with ingrowth and soil carbon, although soil carbon and ingrowth were not significantly correlated with each other. Humic acid concentrations were significantly higher in Sonneratia rhizospheres than in either Bruguiera or Rhizophora rhizospheres and were positively correlated with root ingrowth. The species changes taking place on Kosrae are likely to result in lower rates of root production and foliage decomposition, and more refractory carbon pools in soil.  相似文献   

14.
Lanceispora amphibia gen. et sp. nov. in the Amphisphaeriaceae is described from senescent and fallen leaves ofBruguiera gymnorrhiza in mangrove forests in the Southwest Islands, Japan. The fungus produces immersed ascomata in leaf tissue, cylindrical asci with an apical ring staining blue with iodine, and oblanceolate ascospores with a septum above the middle. Studies on the fungal succession on the mangrove leaves revealed thatL. amphibia infects senescent leaves on the tree and inhabits intertidal fallen leaves, showing the highest frequency of occurrence at the late stage of decomposition. In culture the optimal conditions for hyphal growth were 20 ppt salinity and 30°C, and those for sexual reproduction were 10 ppt salinity and 25°C. Growth at 0 ppt (fresh water) was depressed. The fungus has amphibious habits, growing on the tree and in intertidal water; and it is adapted to the high osmotic conditions in leaf tissues of the mangrove tree and to the subtropical, brackish water environment of mangrove forests.  相似文献   

15.
The diet of the mangrove crab, Aratus pisonii, was assessed by determining the percent of damaged leaves at selected mangrove communities and by examining herbivore gut contents. This study compared the utility of both methods and tested if comparable levels of damage and dietary preference occurred using the methods. Percent of damaged leaves was determined for the three species of mangroves within Tampa Bay, FL, USA, including: the red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa, respectively) in four 5×10-m quadrats during summer 2001. For each species, in each of the quadrats, 200 leaves per tree were assessed for the presence or absence of crab damage. A. pisonii were sampled from the same quadrats from which leaf damage data were collected. Stomach contents were dissected and food items were classified into a number of categories.Species damaged and preferred were determined by comparing relative numbers of mangrove leaf stomata from the three mangrove species in gut contents. Results suggested that both methods provide similar estimates of preference. R. mangle leaves were preferred over those of A. germinans and L. racemosa. The percent of R. mangle leaves with damage was about 20-30 times greater than the other species, and R. mangle leaf stomata were 3 to 20 times more abundant in crab guts compared to leaf stomata of the other species. Gut contents indicated that A. pisonii is omnivorous, that average-sized adult crabs (1.4-1.7-cm width) prefer R. mangle, and that the diet of males is more varied than of females. While use of both percent leaf damage and crab gut contents reliably indicates preference, gut contents may describe better the actual diet and elucidate trends for different size or sex classes within a population.  相似文献   

16.
17.
18.
Effects of duration of waterlogging on growth and physiological responses of two mangrove species, Bruguiera gymnorrhiza and Kandelia candel, were investigated. The relative growth rate of B. gymnorrhiza decreased significantly with waterlogged time, with the highest value found for drained plants and the lowest in plants under 12 weeks waterlogging. On the contrary, no significant difference was found between waterlogged and drained K. candel plants. The shoot to root biomass ratio of K. candel increased when subjected to 8 or 12 weeks waterlogging but little change was recorded in B. gymnorrhiza, indicating a shift in biomass allocation from roots to shoots in K. candel under prolonged waterlogging but not in B. gymnorrhiza. These different growth responses between the two mangrove species supported the hypothesis that K. candel is more tolerant to waterlogging than B. gymnorrhiza. Under 12 weeks waterlogged treatment, root oxidase activity significantly decreased in B. gymnorrhiza but increased in K. candel. Chlorophyll contents of K. candel increased more rapidly in response to waterlogging than B. gymnorrhiza. Activities of both peroxidase and superoxide dismutase increased significantly in leaves of K. candel when the waterlogging period was longer than 8 weeks, while only the peroxidase activity of B. gymnorrhiza showed a significant increase, indicating that K. candel had stronger resistance to the oxidant damage resulting from waterlogging. These physiological indicators further supported the hypothesis that K. candel is more tolerant to waterlogging than B. gymnorrhiza.  相似文献   

19.
The leaf surface fungi associated with nine species of mangrove plants includingAvicennia alba, A. officinalis, Bruguiera parviflora, Ceriops tagal, Rhizophora apiculata, R. mucronata, Sesuvium portulacastrum, Sonneratia alba, andXylocarpus mollucensis were studied using direct observation techniques and leaf washings. Over 40 fungal taxa were isolated from the leaf washings. Of these, species ofAspergillus, Choanephora, Cladosporium, Curvularia, Fusarium, Nigrospora, Penicillium, Pestalotiopsis, Trichoderma, andZygosporium were frequently encountered in the washings of all nine mangrove plants. Fewer species of fungi includingCladosporium oxysporum, Corynespora cassiicola, Fusarium, Penicillium, Pestalotiopsis, andZygosporium were capable of growth on the washed leaves. The major phylloplane fungus on plants with higher leaf tannin content (e.g.B. parviflora, C. tagal, Rhizophora spp., andX. mollucensis) wasPestalotiopsis. Leaves with relatively lower amounts of tannin supported the proliferation ofFusarium as the major fungus. Fungi were present on the plumule and cotyledonous sheath even before the leaves opened.Pestalotiopsis persisted throughout the development and growth of the leaves. Many of the fungi encountered on senescent leaves have been reported in earlier studies to be the primary colonisers of submerged decaying leaves.  相似文献   

20.
Background and AimsMangrove plants are mostly found in tropical and sub-tropical tidal flats, and their limited distribution may be related to their responses to growth temperatures. However, the mechanisms underlying these responses have not been clarified. Here, we measured the dependencies of the growth parameters and respiration rates of leaves and roots on growth temperatures in typical mangrove species.MethodsWe grew two typical species of Indo-Pacific mangroves, Bruguiera gymnorrhiza and Rhizophora stylosa, at four different temperatures (15, 20, 25 and 30 °C) by irrigating with fresh water containing nutrients, and we measured growth parameters, chemical composition, and leaf and root O2 respiration rates. We then estimated the construction costs of leaves and roots and the respiration rates required for maintenance and growth.Key ResultsThe relative growth rates of both species increased with growth temperature due to changes in physiological parameters such as net assimilation rate and respiration rate rather than to changes in structural parameters such as leaf area ratio. Both species required a threshold temperature for growth (12.2 °C in B. gymnorrhiza and 18.1 °C in R. stylosa). At the low growth temperature, root nitrogen uptake rate was lower in R. stylosa than in B. gymnorrhiza, leading to a slower growth rate in R. stylosa. This indicates that R. stylosa is more sensitive than B. gymnorrhiza to low temperature.ConclusionsOur results suggest that the mangrove species require a certain warm temperature to ensure respiration rates sufficient for maintenance and growth, particularly in roots. The underground temperature probably limits their growth under the low-temperature condition. The lower sensitivity of B. gymnorrhiza to low temperature shows its potential to adapt to a wider habitat temperature range than R. stylosa. These growth and respiratory features may explain the distribution patterns of the two mangrove species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号