首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The purpose of this study is to predict human response to, and potential damage from, impact loading by using numerical and physical models to monitor the head and thoracic reactions, intervertebral disk pressures, muscle elongations, and some internal organ pressures. The numerical model consists of a three-dimensional lumped-parameter system of ten rigid bodies connected by nine intervertebral joints and 28 muscle pairs. The masses represent the head; cervical vertebrae C1-C2, C3-C4, C5-C6, C7-T1 (the first thoracic vertebra); the entire thorax; lumbar vertebrae L1-L2, L3, L4-L5; and the pelvis. The physical model consists of: a water-filled cadaver skull, held in position by attached ligaments; plastic skeletal components involving vertebrae, sternum, ribs and pelvis; silicon rubber intervertebral disks; fabric muscles and ligaments; and water-filled containers replicating the liver, spleen and kidneys. The pelvis of the model is affixed to a plate mounted on a sled that runs on a track. Loading is applied by deceleration from a given velocity that occurs due to the impact of the sled with a fixed aluminum block. Results from the numerical model are compared with corresponding experimental information from the physical structure. Good correlation was obtained in these comparisons up to about 200-250 ms after impact. The results indicate that the head, cervical muscles and disks in the lumbar region are subjected to the greatest force changes and thus are most likely to be injured.  相似文献   

2.
Development and validation of a CO-C7 FE complex for biomechanical study   总被引:4,自引:0,他引:4  
In this study, the digitized geometrical data of the embalmed skull and vertebrae (C0-C7) of a 68-year old male cadaver were processed to develop a comprehensive, geometrically accurate, nonlinear C0-C7 FE model. The biomechanical response of human neck under physiological static loadings, near vertex drop impact and rear-end impact (whiplash) conditions were investigated and compared with published experimental results. Under static loading conditions, the predicted moment-rotation relationships of each motion segment under moments in midsagittal plane and horizontal plane agreed well with experimental data. In addition, the respective predicted head impact force history and the S-shaped kinematics responses of head-neck complex under near-vertex drop impact and rear-end conditions were close to those observed in reported experiments. Although the predicted responses of the head-neck complex under any specific condition cannot perfectly match the experimental observations, the model reasonably reflected the rotation distributions among the motion segments under static moments and basic responses of head and neck under dynamic loadings. The current model may offer potentials to effectively reflect the behavior of human cervical spine suitable for further biomechanics and traumatic studies.  相似文献   

3.
The scalp plays a crucial role in head impact biomechanics, being the first tissue involved in the impact and providing a sliding interface between the impactor and/or helmet and the skull. It is important to understand both the scalp-skull and the scalp-helmet sliding in order to determine the head response due to an impact. However, experimental data on the sliding properties of the scalp is lacking. The aim of this work was to identify the sliding properties of the scalp using cadaver heads, in terms of scalp-skull and scalp-liner (internal liner of the helmet) friction and to compare these values with that of widely used artificial headforms (HIII and magnesium EN960). The effect of the hair, the direction of sliding, the speed of the test and the normal load were considered. The experiments revealed that the sliding behaviour of the scalp under impact loading is characterised by three main phases: (1) the low friction sliding of the scalp over the skull (scalp-skull friction), (2) the tensioning effect of the scalp and (3) the sliding of the liner fabric over the scalp (scalp-liner friction). Results showed that the scalp-skull coefficient of friction (COF) is very low (0.06 ± 0.048), whereas the scalp-liner COF is 0.29 ± 0.07. The scalp-liner COF is statistically different from the value of the HIII-liner (0.75 ± 0.06) and the magnesium EN960-liner (0.16 ± 0.026). These data will lead to the improvement of current headforms for head impact standard tests, ultimately leading to more realistic head impact simulations and the optimization of helmet designs.  相似文献   

4.
Investigations of biomechanical properties of pediatric cadaver cervical spines subjected to tensile or bending modes of loading are generally limited by a lack of available tissue and limiting sample sizes, both per age and across age ranges. It is therefore important to develop fixation techniques capable of testing individual cadavers in multiple modes of loading to obtain more biomechanical data per subject. In this study, an experimental apparatus and fixation methodology was developed to accommodate cadaver osteoligamentous head-neck complexes from around birth (perinatal) to full maturation (adult) [cervical length: 2.5-12.5 cm; head breadth: 6-15 cm; head length: 6-19 cm] and sequentially test the whole cervical spine in tension, the upper cervical spine in bending and the upper cervical spine in tension. The experimental apparatus and the fixation methodology provided a rigid casting of the head during testing and did not compromise the skull. Further testing of the intact skull and sub-cranial material was made available due to the design of the apparatus and fixation techniques utilized during spinal testing. The stiffness of the experimental apparatus and fixation technique are reported to better characterize the cervical spine stiffness data obtained from the apparatus. The apparatus and fixation technique stiffness was 1986 N/mm. This experimental system provides a stiff and consistent platform for biomechanical testing across a broad age range and under multiple modes of loading.  相似文献   

5.
The aim of the present in vitro study was to investigate the effect of the crash pulse shape on the peak loading and the injury tolerance levels of the human neck. In a custom-made acceleration apparatus 12 human cadaveric cervical spine specimens, equipped with a dummy head, were subjected to a series of incremental side accelerations. While the duration of the acceleration pulse of the sled was kept constant at 120 ms, its shape was varied: Six specimens were loaded with a slowly increasing pulse, i.e. a low loading rate, the other six specimens with a fast increasing pulse, i.e. a high loading rate. The loading of the neck was quantified in terms of the peak linear and angular acceleration of the head, the peak shear force and bending moment of the lower neck and the peak translation between head and sled. The shape of the acceleration curve of the sled only seemed to influence the peak translation between head and sled but none of the other four parameters. The neck injury tolerance level for the angular acceleration of the head and for the bending moment of the lower neck was almost identical for both, the high and the low loading rate. In contrast, the injury tolerance level for the linear acceleration of the head and for the shear force of the lower neck was slightly higher for the low loading rate as compared to the high loading rate. For the translation between head and sled this difference was even statistically significant. Thus, if the shape of the crash pulse is not known, solely the peak bending moment of the lower neck and the peak angular acceleration of the head seem to be suitable predictors for the neck injury risk but not the peak shear force of the lower neck, the peak linear acceleration of the head and the translation between head and thorax.  相似文献   

6.
Summary A method to produce pressure pulses useful in percussion concussion experiments in animals is presented. The pulses can be varied within the range found in acceleration impact pressure patterns in human cadaver skulls.The transmission and distortion of the produced pressure pulses were studied in waterfilled models and in rabbit skulls. Positive pressures are more easily transmitted than negative pressures, particularly through the rabbit skull. The possibility to cause local brain injuries with short negative pressures at the site of input is demonstrated. The vital and cytochemical response of the living animal to pressure pulses will be published elsewhere.This work was supported by grants from the Medical Faculty of the University of Gothenburg, Statens Trafiksäkerhetsråd and Försäkringsaktiebolaget Fylgia.  相似文献   

7.
Multi-body musculoskeletal models that can be used concurrently to predict joint contact pressures and muscle forces would be extremely valuable in studying the mechanics of joint injury. The purpose of this study was to develop an anatomically correct canine stifle joint model and validate it against experimental data. A cadaver pelvic limb from one adult dog was used in this study. The femoral head was subjected to axial motion in a mechanical tester. Kinematic and force data were used to validate the computational model. The maximum RMS error between the predicted and measured kinematics during the complete testing cycle was 11.9 mm translational motion between the tibia and the femur and 4.3° rotation between patella and femur. This model is the first step in the development of a musculoskeletal model of the hind limb with anatomically correct joints to study cartilage loading under dynamic conditions.  相似文献   

8.
Whiplash injuries are common following rear-end collisions. During such collisions, initially relaxed occupants exhibit brisk, stereotypical muscle responses consisting of postural and startle responses that may contribute to the injury. Using prestimulus inhibition, we sought to determine if the startle response elicited during a rear-end collision contributes to head stabilization or represents a potentially harmful overreaction of the body. Three experiments were performed. In the first two experiments, two groups of 14 subjects were exposed to loud tones (124 dB) preceded by prestimulus tones at either four interstimulus intervals (100-1,000 ms) or five prestimulus intensities (80-124 dB). On the basis of the results of the first two experiments, 20 subjects were exposed to a simulated rear-end collision (peak sled acceleration = 2 g; speed change = 0.75 m/s) preceded by one of the following: no prestimulus tone, a weak tone (85 dB), or a loud tone (105 dB). The prestimulus tones were presented 250 ms before sled acceleration onset. The loud prestimulus tone decreased the amplitude of the sternocleidomastoid (16%) and cervical paraspinal (29%) muscles, and key peak kinematics: head retraction (17%), horizontal head acceleration (23%), and head angular acceleration in extension (23%). No changes in muscle amplitude or kinematics occurred for the weak prestimulus. The reduced muscle and kinematic responses observed with loud tones suggest that the startle response represents an overreaction that increases the kinematics in a way that potentially increases the forces and strains in the neck tissues. We propose that minimizing this overreaction during a car collision may decrease the risk of whiplash injuries.  相似文献   

9.
Skull fracture is a frequently observed type of severe head injury. Historically, a variety of impact test set-ups and techniques have been used for investigating skull fracture. The most frequently used are the free-fall technique, the guided fall or drop tower set-up and the piston-driven impactor set-up. This document proposes a new type of set-up for cadaver head impact testing which combines the strengths of the most frequently used techniques and devices. The set-up consists of two pendulums, which allow for a 1 degree of freedom rotational motion. The first pendulum is the impactor and is used to strike the blow. The head is attached to the second pendulum using a polyester resin. Local skull deformation and impact force are measured with a sample frequency of 65 kHz. From these data, absorbed energy until skull fracture is calculated. A set-up evaluation consisting of 14 frontal skull and head impact tests shows an accurate measurement of both force and local skull deformation until fracture of the skull. Simplified mechanical models are used to analyse the different impacting techniques from literature as well as the new proposed set-up. It is concluded that the proposed test set-up is able to accurately calculate the energy absorbed by the skull until fracture with an uncertainty interval of 10%. Second, it is concluded that skull fracture caused by blunt impact occurs before any significant motion of the head. The two-pendulum set-up is the first head impact device to allow a well-controlled measurement environment without altering the skull stress distribution.  相似文献   

10.
A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies.  相似文献   

11.
Computational models of the human brain are widely used in the evaluation and development of helmets and other protective equipment. These models are often attempted to be validated using cadaver tissue displacements despite studies showing neural tissue degrades quickly after death. Addressing this limitation, this study aimed to develop a technique for quantifying living brain motion in vivo using a closed head impact animal model of traumatic brain injury (TBI) called CHIMERA. We implanted radiopaque markers within the brain of three adult ferrets and resealed the skull while the animals were anesthetized. We affixed additional markers to the skull to track skull kinematics. The CHIMERA device delivered controlled, repeatable head impacts to the head of the animals while the impacts were fluoroscopically stereo-visualized. We observed that 1.5 mm stainless steel fiducials (∼8 times the density of the brain) migrated from their implanted positions while neutral density targets remained in their implanted position post-impact. Brain motion relative to the skull was quantified in neutral density target tests and showed increasing relative motion at higher head impact severities. We observed the motion of the brain lagged behind that of the skull, similar to previous studies. This technique can be used to obtain a comprehensive dataset of in vivo brain motion to validate computational models reflecting the mechanical properties of the living brain. The technique would also allow the mechanical response of in vivo brain tissue to be compared to cadaveric preparations for investigating the fidelity of current human computational brain models.  相似文献   

12.
A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid–structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.  相似文献   

13.
In order to evaluate the validity of the use of the cadaver in making estimates of the living human response to cardio-thoracic impact a series of tests were performed under similar conditions comparing the force-deflection response of the anaesthetized and the embalmed Rhesus monkey. Twelve primates (100 tests) were subjected to controlled thoracic impact with a Remington Humane Stunner while seated in a sled held firmly in place. Tests on 8 of the monkeys were performed while they were anaesthetized and again 30 days after being embalmed. Four monkeys were tested only after embalming. X-rays were used to evaluate rib fractures.

Results showed clear significant differences between anaesthetized primates and those tested 30 days after being embalmed. Forces developed under the same test conditions were 132 per cent higher for the embalmed primates compared to anaesthetized monkeys under static test conditions at maximum displacement and 25–50 per cent higher under dynamic testing conditions for all but the initial part of the tests. The results of these studies indicate that the mechanical characteristics of the primate thorax are dramatically affected by death and/or subsequent embalming procedures.  相似文献   


14.
Fluid percussion injury (FPI) is a widely used experimental model for studying traumatic brain injury (TBI). However, little is known about how the brain mechanically responds to fluid impacts and how the mechanical pressures/strains of the brain correlate to subsequent brain damage for rodents during FPI. Hence, we developed a numerical approach to simulate FPI experiments on rats and characterize rat brain pressure/strain responses at a high resolution. A previous rat brain model was improved with a new hexahedral elements-based skull model and a new cerebrospinal fluid (CSF) layer. We validated the numerical model against experimentally measured pressures from FPI. Our results indicated that brain tissues under FPI experienced high pressures, which were slightly lower (10–20%) than input saline pressure. Interestingly, FPI was a mixed focus- and diffuse-type injury model with highest strains (12%) being concentrated in the ipsilateral cortex under the fluid-impact site and diffuse strains (5–10%) being spread to the entire brain, which was different from controlled cortical impact in which high strains decreased gradually away from the impact site.  相似文献   

15.
Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accuracy for modeling the nearly incompressible brain tissue, deviatoric and volumetric stress contributions are separated. Deviatoric stress is modeled in a non-linear viscoelastic differential form. Volumetric behavior is assumed linearly elastic. Linear viscoelastic material parameters were derived from published data on oscillatory experiments, and from ultrasonic experiments. Additionally, non-linear parameters were derived from stress relaxation (SR) experiments at shear strains up to 20%. The model was tested by simulating the transient phase in the SR experiments not used in parameter determination (strains up to 20%, strain rates up to 8s(-1)). Both time- and strain-dependent behavior were predicted accurately (R2>0.96) for strain and strain rates applied. However, the stress was overestimated systematically by approximately 31% independent of strain(rate) applied. This is probably caused by limitations of the experimental data at hand.  相似文献   

16.
Understanding how the skull transmits and dissipates forces during feeding provides insights into the selective pressures that may have driven the evolution of primate skull morphology. Traditionally, researchers have interpreted masticatory biomechanics in terms of simple global loading regimes applied to simple shapes (i.e., bending in sagittal and frontal planes, dorsoventral shear, and torsion of beams and cylinders). This study uses finite element analysis to examine the extent to which these geometric models provide accurate strain predictions in the face and evaluate whether simple global loading regimes predict strains that approximate the craniofacial deformation pattern observed during mastication. Loading regimes, including those simulating peak loads during molar chewing and those approximating the global loading regimes, were applied to a previously validated finite element model (FEM) of a macaque (Macaca fascicularis) skull, and the resulting strain patterns were compared. When simple global loading regimes are applied to the FEM, the resulting strains do not match those predicted by simple geometric models, suggesting that these models fail to generate accurate predictions of facial strain. Of the four loading regimes tested, bending in the frontal plane most closely approximates strain patterns in the circumorbital region and lateral face, apparently due to masseter muscle forces acting on the zygomatic arches. However, these results indicate that no single simple global loading regime satisfactorily accounts for the strain pattern found in the validated FEM. Instead, we propose that FE models replace simple cranial models when interpreting bone strain data and formulating hypotheses about craniofacial biomechanics.  相似文献   

17.

Objective

To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery.

Materials and Methods

In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems.

Results

The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons.

Conclusion

The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute.  相似文献   

18.
Traumatic brain injury (TBI) has become a major public health and socioeconomic problem that affects 1.5 million Americans annually. Finite element methods have been widely used to investigate TBI mechanisms. The pia-arachnoid complex (PAC) covering the brain plays an important role in the mechanical response of the brain during impact or inertial loading. Existing finite element brain models have tended to oversimplify the response of the PAC due to a lack of accurately defined material properties of this structure, possibly resulting in a loss of accuracy in the model predictions. The objectives of this study were to experimentally determine the material properties of the PAC under shear loading. Bovine PAC was selected in the current study in view of its availability and comparability with previous studies. Tangential shear tests were conducted at 0.8, 7.3, and 72 s(-1). The mean shear moduli were 11.73, 20.04, and 22.37 kPa at the three strain rates tested. The ultimate stress, at the three strain rates, was 9.21, 17.01, and 22.26 kPa, while the ultimate strain was 1.52, 1.58, and 1.81. Results from the current study provide essential information to properly model the PAC membrane, an important component in the skull/brain interface, in a computational model of the human/animal head. Such an improved representation of the in vivo skull/brain interface will enhance future studies investigating brain injury mechanisms under various loading conditions.  相似文献   

19.
Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative motion between the brain and skull can explain many types of traumatic brain injuries (TBI) including acute subdural hematomas (ASDH) and subarachnoid hemorrhage (SAH) which is caused by the rupture of bridging veins that transverse from the deep brain tissue to the superficial meningeal coverings. The complicated geometry of the SAS trabeculae makes it impossible to model all the details of the region. Investigators have compromised this layer with solid elements, which may lead to inaccurate results. In this paper, the failure of the cerebral blood vessels due to the head impacts have been investigated. This is accomplished through a global/local modelling approach. Two global models, namely a global solid model (GSM) of the skull/brain and a global fluid model (GFM) of the SAS/CSF, were constructed and were validated. The global models were subjected to two sets of impact loads (head injury criterion, HIC = 740 and 1044). The relative displacements between the brain and skull were determined from GSM. The CSF equivalent fluid pressure due to the impact loads were determined by the GFM. To locally study the mechanism of the injury, the relative displacement between the brain and skull along with the equivalent fluid pressure were implemented into a new local solid model (LSM). The strains of the cerebral blood vessels were determined from LSM. These values were compared with their relevant experimental ultimate strain values. The results showed an agreement with the experimental values indicating that the second impact (HIC = 1044) was strong enough to lead to severe injury. The global/local approach provides a reliable tool to study the cerebral blood vessel ruptures leading to ASDH and/or SAH.  相似文献   

20.
Non-destructive measurement of acceleration-induced displacement fields within a closed object is a fundamental challenge. Inferences of how the brain deforms following skull impact have thus relied largely on indirect estimates and course-resolution cadaver studies. We developed a magnetic resonance technique to quantitatively identify the modes of displacement of an accelerating soft object relative to an object enclosing it, and applied it to study acceleration-induced brain deformation in human volunteers. We show that, contrary to the prevailing hypotheses of the field, the dominant mode of interaction between the brain and skull in mild head acceleration is one of sliding arrested by meninges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号