首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
Indoleacetic acid (IAA), a factor that induces growth in epicotyls of cicer arietinum L. cv. Castellana, increases the autolytic capacity of the cell walls by 50%, suggesting that autolysis is related to the processes of cell wall loosening that accompany growth. IAA promotes an increase in the specific activities of the enzymes involved in autolysis, mainly α-galactosidase (EC 3.2.1.22). This relationship autolysis-growth. was also observed in a study of the autolytic capacity of cell walls from regions of the epicotyl with different growth capacity. The sugars released and the level of enzymatic protein were higher in the subapical region that towards the base.  相似文献   

2.
Propionibacterium freudenreichii plays an important role in Swiss cheese ripening (it produces propionic acid, acetic acid, and CO2). Moreover, autolysis of this organism certainly contributes to proteolysis and lipolysis of the curd because intracellular enzymes are released. By varying external factors, we determined the following conditions which promoted autolysis of both whole cells and isolated cell walls of P. freudenreichii CNRZ 725: (i) 0.1 M potassium phosphate buffer (pH 5.8) at 40°C and (ii) 0.05 to 0.1 M KCl at 40°C. We found that early-exponential-phase cells possessed the highest autolytic activity. It should be emphasized that the pH of Swiss cheese curd (pH 5.5 to 5.7) is near the optimal pH which we determined. Ultrastructural observations by electron microscopy revealed a 16-nm-thick homogeneous cell wall, as well as degradation of the cell wall that occurred concomitantly with cell autolysis. In the presence of 0.05 M potassium chloride, there was a great deal of isolated cell wall autolysis (the optical density at 650 nm decreased 77.5% ± 7.3% in 3 h), and one-half of the peptidoglycan material was released. Finally, the main autolytic activity was due to an N-acetylglucosaminidase activity.  相似文献   

3.
The mycelium of Mucor rouxii reached a 50% degree of lysis after 50 days incubation, and was then stable with the incubation time. The pH of the medium was 4.3 when autolysis began, rising to pH 7.6 after 6 days of autolysis and remaining there for the duration of the experiment. Maximum degradation of mycelium occurs during the first days of autolysis. Glucosamine is present in the culture liquid during all the autolytic process. Enzymes implicated in the degradation of chitosan and chitin were studied in the culture fluid during autolysis. An exochitosanase activity was detected after a day of autolysis, and its activity increased during 20 days of autolysis and afterwards remained constant until the end of the process. An endochitosanase activity was detected in the culture fluid from the beginning of the autolysis, having its maximum activity after 34 days of incubation. Both activities show an optimum pH of 5.5, but the pH range of activity for endochitosanase was broader than for exochitosanase. Both activities were not inhibited by 0.5 mM glucosamine. Activities of the enzymes B-N-acetylglucosaminidase and chitinase were not found. The chitosan content in the cell walls decreased with the incubation time. In these cell walls the chitin content experienced an increase at the beginning of the autolysis, decreasing afterwards. The enzymatic complex obtained from autolyzed cultures of M. rouxii hydrolyzed 2-day-old cell walls of this fungus. The hydrolysis was 21% after 24 h of incubation, liberating glucose and glucosamine. As a consequence protoplasts from M. rouxii germinated spores were obtained with its own lytic enzymes in adequate osmotic conditions. The involvement of chitosanases in the autolysis of this fungus have been studied.  相似文献   

4.
The kinetics of the autolytic phase of growth in cultures of Aspergillus niger has been studied. Two different autolytic periods could be distinguished. One, consisting of a rapid (exponential) loss (62%) of mycelial weight, occurred between 36 and 117 hours of incubation. A second, consisting of a slow autolysis, occurred between the 117th and the 190th hour of incubation; the mycelial loss here being 5%. Based on the degree of autolysis (=67.0%), 92.5% and 7.5% are lost during the first and the second autolytic periods, respectively.  相似文献   

5.
Low concentrations of glutaraldehyde (0.1% or higher) blocked cellular and wall autolysis. The site of autolytic activity was studied by allowing cell autolysis to proceed for very short periods (0 to 15 min) before addition of glutaraldehyde. Electron microscopy of ultrathin sections showed that the primary site of autolytic activity was the leading edge of the nascent cross wall. The base of the cross wall seemed more resistant than the tip. Evidence supporting the involvement of autolysin activity in continued wall extension and in cell separation as well as in the initiation of new sites of wall extension was obtained. In cells exposed for 10 min to chloramphenicol, wall dissolution was very much slower but occurred at the same cross wall site.  相似文献   

6.
The phytohemagglutinin concanavalin A inhibited zygote formation of Chlamydomonas reinhardii. 15–50 μg lectin/ml not only interfered with the mating reaction, but also with cell wall lysis of gametes and zoospores in a crude autolysin preparation gained from copulating gametes. Further, the structure of cell walls shed into the medium after autolysis in the course of the mating reaction and after lysis “from without” in the crude autolysin preparation was stabilized by Con A. Therefore, it must be assumed that the lectin inhibited zygote formation of C. reinhardii by interfering with autolysis of the cell walls of the gametes. Though Con A inhibited the lytic processes of C. reinhardii, an activation of the autolytic system in ⊖ gametes by the lectin was found to compete with its inhibitory reaction. Con A induced autolysis of ⊖ gametes was dependent on adherence of the cells by their flagella to the surface of the culture vessel or the liquid medium and did not occur in cultures stirred by rotation. The interferences of Con A with the autolytic system of C. reinhardii were inhibited by methyl-α-d-mannopyranoside and to a lesser degree by glucose, indicating that the carbohydrate binding sites of the lectin were involved in its reactions with the cells.  相似文献   

7.
Autolytic defective mutant of Streptococcus faecalis.   总被引:21,自引:14,他引:7       下载免费PDF全文
Properties of a variant of Streptococcus faecalis ATCC 9790 with defective cellular autolysis are described. The mutant strain was selected as a survivor from a mutagenized cell population simultaneously challenged with two antibiotics which inhibit cell wall biosynthesis, penicillin G and cycloserine. Compared to the parental strain, the mutant strain exhibited: (i) a thermosensitive pattern of cellular autolysis; (ii) an autolytic enzyme activity that had only a slightly increased thermolability when tested in solution in the absence of wall substrate; and (iii) an isolated autolysin that had hydrolytic activity on isolated S. faecalis wall substrate indistinguishable from that of the parental strain, but that was inactive when tested on walls of Micrococcus lysodeikticus as a substrate. These data indicate an alteration in the substrate specificity of the autolytic enzyme of the mutant which appears to result from the synthesis of an altered form of autolytic enzyme.  相似文献   

8.
Oryza sativa L. var. bahia coleoptile cell walls show sufficient autolytic activity for the release into the surrounding medium of amounts up to 60 μg of sugars per mg of dry weight of cell wall. The products released elute in Bio-gel P.2 as mono- and polysaccharides with glucose as the sole component. The polysaccharide component releases tri- and tetrasaccharides on treatment with a glucanase specific for β (1–3) (1–4) linkages in the same proportion as that of the mixed glucan of the cell wall. This supports the hypothesis that the polysaccharide component originates from the cell wall glucan and that autolysis is therefore related to the processes of the loss of rigidity of the cell wall. Nojirimycin (a specific glucanase inhibitor and inhibitor of auxin-induced elongation) decreases autolytic activity of the cell walls, reducing it to 30% of its normal value. Bio-gel P. 2 elution of the products released in autolysis in the presence of nojirimycin shows that only the monosaccharide fraction was affected.  相似文献   

9.
The addition of saturated C6, C8, C10, and C12 fatty acids appeared to lyse actively growing cells of Bacillus subtilis 168, as judged by a decrease in the optical density of the culture. Of these fatty acids, dodecanoic acid was the most effective, with 50% lysis occurring in about 30 min at a concentration of 0.5 mM. These conditions also decreased the amount of peptidoglycan estimated by the incorporated radioactivity of N-acetyl-D-[1-14C]glucosamine. At concentrations above 1 mM, however, bacterial lysis was not extensive. Dodecanoic acid did not affect autolysis of the cell wall. The lytic action of dodecanoic acid was greatly diminished in cells in which protein synthesis was inhibited and in an autolytic enzyme-deficient mutant. The results suggest that fatty acid-induced lysis of B. subtilis 168 is due to the induction of autolysis by an autolytic enzyme rather than massive solubilization of the cell membrane by the detergent-like action of the fatty acids.  相似文献   

10.
Aims: To elucidate the roles of the β‐1,3‐endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. Methods and Results: A β‐1,3‐endoglucanase was purified from carbon‐starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene‐expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. Conclusions: The β‐1,3‐endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall–degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. Significance and Impact of the Study: No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases.  相似文献   

11.
The influence of arginine on autolysis and proteolysis was studied. Arginine at the concentration of 0.5 and 1.0 microM/ml was added to the incubation mixture. Proteolytic processes were studied in the acid, neutral and alkaline media (pH 4.5; 7.4; 8.5). Autolysis was determined by incubation of the brain and liver homogenates and proteolysis by the use of bovine serum albumin as a substrate. Autolytic and proteolytic activities were calculated as an increase of Folin positive compounds or amino nitrogen in the samples. It was established that the influence in vitro of arginine on the proteolytic processes depended on pH, type of the peptide-hydrolases, to a lesser extent, on the arginine concentration and did not depend on the tissue type. Arginine displayed its regulative action in the brain and liver by the same way. The addition of arginine had an effect on autolysis and proteolysis in the neutral and alkaline media. Determination of autolytic and proteolytic activities by Folin positive compounds has shown that arginine addition into the samples decreased autolysis and proteolysis. At the same time determination of autolysis and proteolysis by amino nitrogen in the presence of arginine has shown that autolytic and proteolytic activities increased.  相似文献   

12.
The autolytic N-acetylmuramidase present in Lactobacillus acidophilus strain 63 AM Gasser has an optimal pH between 5 and 6 when lysing intact cells or isolated cell walls. Cellular lysis at pH 5 is two to four times more rapid in citrate buffer of 0.01 M and 0.5 M or higher than in 0.1 M acetate buffer. It seems that sulfhydryl groups are required for both cell and wall autolysis. Heavy metal ions and p-chloro-mercuribenzoate, at low concentrations, are powerful inhibitors. Ethylenediaminetetraacetic acid stimulates cellular but not wall autolysis in acetate buffer to the level obtained in citrate buffer. The possible involvement of sulfhydryl groups in a mechanism of control of cellular autolytic activity is discussed. The autolytic enzyme, although unstable in solution at 37 C, can be extracted from walls by the use of solutions of bovine serum albumin (100 mug/ml) in 0.01 N NaOH. Soluble enzyme extracted from walls rebinds on to sodium decylsulfate-treated walls, but three times as much of the wall material is required to completely re-adsorb the activity.  相似文献   

13.
The protein extracted from the cell wall of the epicotyls of Cicer arietinum L. cv. Castellana was separated by ion exchange chromatography in four different fractions with β-D-galactosidase (EC 3.2.1.23) activity. These were called βI, βII, βIII and βIV, according to their order of elution. βII was associated with a particularly high β-D-glucosidase (EC 3.2.1.21) activity. Gel filtration chromatography of each of the fractions gave further subdivision of fractions βI and βIII. Subfractions 1 βI, 1 βII and 1 βIV have glucosidase activity and subfractions 2 βI and 2 βIII have galactosidase activity.
The studies on the hydrolytic capacity of these fractions and its relationship with the autolytic process seem to show that subfraction 2 βIII is responsible for autolysis. The release of total and reducing sugars is very similar for autolysis and hydrolysis by 2 βIII. The sugars released are mainly galactose and, to a lesser extent arabinose and glucose. Galactose is released as a monosaccharide, while arabinose remains associated to a polysaccharide component together with glucose and small amounts of galactose.  相似文献   

14.
Two highly autolytic Lactococcus lactis subsp. cremoris strains (CO and 2250) were selected and analyzed for their autolytic properties. Both strains showed maximum lysis when grown in M17 broth containing a limiting concentration of glucose (0.4 to 0.5%) as the carbohydrate source. Lysis did not vary greatly with pH or temperature but was reduced when strains were grown on lactose or galactose. Growth in M17 containing excess glucose (1%) prevented autolysis, although rapid lysis of L. lactis subsp. cremoris CO did occur in the presence of 1% glucose if sodium fluoride (an inhibitor of glycolysis) was added to the medium. Maximum cell lysis in a buffer system was observed early in the stationary phase, and for CO, two pH optima were observed for log-phase and stationary-phase cells (6.5 and 8.5, respectively). Autolysins were extracted from the cell wall fraction of each strain by using either 4% sodium dodecyl sulfate (SDS), 6 M guanidine hydrochloride, or 4 M lithium chloride, and their activities were analyzed by renaturing SDS-polyacrylamide gel electrophoresis on gels containing Micrococcus luteus or L. lactis subsp. cremoris CO cells as the substrate. More than one lytic band was observed on each substrate, with the major band having an apparent molecular mass of 48 kDa for CO. Each lytic band was present throughout growth and lysis. These results suggest that at least two different autolytic enzymes are present in the autolytic L. lactis subsp. cremoris strains. The presence of the lactococcal cell wall hydrolase gene, acmA (G. Buist, J. Kok, K. J. Leenhouts, M. Dabrowska, G. Venema, and A. J. Haandrikman, J. Bacteriol. 177:1554-1563, 1995), in strains 2250 and CO was confirmed by Southern hybridization. Analysis of an acmA deletion mutant of 2250 confirmed that the gene was involved in cell separation and had a role in cell lysis.  相似文献   

15.
Young, Frank E. (Western Reserve University, Cleveland, Ohio). Fractionation and partial characterization of the products of autolysis of cell walls of Bacillus subtilis. J. Bacteriol. 92:839-846. 1966.-Autolysis of the cell wall of Bacillus subtilis by an indigenous autolytic enzyme results in solubilization of 90% of the cell wall. The solubilized cell wall (supernatant fraction) was fractionated by the combination of ion-exchange chromatography on diethylaminoethyl cellulose and gel filtration on Sephadex G-25 into polysaccharides (composed of N-acyl glucosamine and N-acyl muramic acid), mucopeptides, peptides, and teichoic acid. The chemical composition of the products of autolysis confirms the proposed mechanism of autolysis and establishes the autolytic enzyme as an N-acyl muramyl-l-alanine amidase. The heteropolymers in the cell wall are linked by peptide bridges. Two peptides which account for 70% of the peptides of the cell wall have a molar ratio of 1.0:0.9:1.3 for diaminopimelic acid, glutamic acid, and alanine, respectively. Other minor peptides contain diaminopimelic acid, glutamic acid, and alanine in molar ratios of 1.0:0.9:1.5, 1.0:0.5:1.0, and 1.0:1.5:1.7, respectively. The procedures employed in this study should be applicable to the fractionation of heteropolymers in cell walls of other gram-positive organisms and thereby aid in the study of the structure of antigenic determinants and endotoxins.  相似文献   

16.
A mutant of Staphylococcus aureus H (RUS3) uas isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. The rate of autolysis of whole cells and isolated cell walls of RUS3 was less than 10% of the parent strain. In addition, the ability of the crude soluble enzyme isolated from RUS3 to degrade cell walls was negligible compared with the parent strain. The cell wall composition and the generation time of RUS3 were comparable to the parent strain. Unlike S. aureus H, RUS3 grew in clumps and did not undergo cell wall turnover. Both strains exhibited identical kinetics of killing by penicillin G. This may indicate that autolytic enzymes play a role in cell wall turnover and cell separation, but in S. aureus most of the autolytic activity is unrelated to the lethal effect of cell wall antibiotics.  相似文献   

17.
18.
The kinetics of release of old versus new cell wall in two strains of Staphylococcus aureus were studied during autolysis. In both strains the autolytic enzyme is an amidase. Cells were double labeled with (3)H and (14)C, and the distribution of radioactivity in the cell walls was monitored during autolysis. In all cases the rate of release of steady-state lable from peptidoglycan was significantly higher than that of pulse label. Identical results were obtained with whole cells or isolated cell walls. The results suggest that in S. aureus the old cell wall is preferentially released during autolysis.  相似文献   

19.
Polyclonal antibodies were raised in response to βIII-galactosidase purified from cell wall of Cicer arietinum epicotyls. The antibody preparation generated, bound to βIII protein giving a major protein band in the zone corresponding to Mr 45 000, the molecular mass previously estimated for βIII-galactosidase. These antibodies clearly suppress autolytic reactions in isolated walls of Cicer arietinum epicotyl segments, while the preimmune serum had no effect on autolytic reaction. The results strongly support the idea that the autolytic degradation of the cell wall is carried out by the βIII-galactosidase.
The antibodies against β-galactosidase were also able to inhibit cell wall hydrolysis mediated by both total cell wall protein extracted by LiCl and cell wall hydrolysis mediated by βIII-galactosidase.
Since autolysis is thought to be related to the process of cell wall loosening, the effects of the antibodies against the autolytic enzyme was also tested on epicotyl growth. β-galactosidase antibodies consistently inhibited IAA-induced elongation.  相似文献   

20.
The cell wall degradation products released from Escherichia coli during autolysis triggered by cephaloridine or trichloroacetic acid were isolated and characterized. Murein was selectively lost from the disaccharide tetrapeptides and the bisdisaccharide tetrapeptide components. Two major autolytic products accounted for more than 85% of the released material. Compound 1 (60 to 80% of released material) was a disaccharide tetrapeptide monomer containing a 1,6-anhydromuramic acid residue. Compound 2 (15 to 30% of released material) was a mixture of a tritripeptide and a tritetrapeptide without hexosamines. Taken together the findings suggest that autolytic cell wall degradation in E. coli is selective and involves the activity of both the hydrolytic transglycosylase and an endopeptidase. Upon release, at least some of the wall components were also exposed to the activity of the N-acetylmuramic acid-L-alanine amidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号