首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Summary Brush border membrane vesicles were prepared from mussel gills using differential and sucrose density gradient centrifugation. These vesicles contained both the maximal Na+-dependent alanine transport activity found in the gradient and the maximal activities of -glutamyl transpeptidase and alkaline phosphatase. Electron micrographs showed closed vesicles of approximately 0.1–0.5 m diameter. Transport experiments using these vesicles demonstrated a transient 18-fold overshoot in intravesicular alanine concentration in the presence of an inwardly directed Na+ gradient, but not under Na+ equilibrium conditions. A reduced overshoot (10-fold) was seen with an inwardly directed K+ gradient. Further studies revealed a broad cation selectivity, with preference for Na+, which was characteristic of alanine transport but not glucose transport in these membranes. The apparent amino acid specificity of the uptake pathway(s) was similar to that of intact gills and supported the idea of at least four separate pathways for amino acid transport in mussel gill brush border membranes. The apparent Michaelis constant for alanine uptake was approximately 7m, consistent with values forK t determined with intact tissue.  相似文献   

2.
Summary Na+–H+ exchange activity in renal brush border membrane vesicles isolated from hyperthyroid rats was increased. When examined as a function of [Na+], treatment altered the initial rate of Na+ uptake by increasingV m (hyperthyroid, 18.9±1.1 nmol Na+ · mg–1 · 2 sec–1; normal, 8.9±0.3 nmol Na+ · mg–1 · 2 sec–1), and not the apparent affinityK Na + (hyperthyroid, 7.3±1.7mm; normal, 6.5±0.9mm). When examined as a function of [H+] and at a subsaturating [Na+] (1mm), hyperthyroidism resulted in the proportional increase in Na+ uptake at every intravesicular pH measured. A positive cooperative effect on Na+ uptake was found with increased intravesicular acidity in vesicles from both normal and hyperthyroid rats. When the data were analyzed by the Hill equation, it was found that hyperthyroidism did not change then (hyperthyroid, 1.2±0.06; normal, 1.2±0.07) or the [H+]0.5 (hyperthyroid, 0.39±0.08 m; normal, 0.44±0.07 m) but increased the apparentV m (hyperthyroid, 1.68±0.14 nmol Na+ · mg–1 · 2 sec–1; normal 0.96±0.10 nmol Na+ · mg–1 · 2 sec–1). The uptake of Na+ in exchange for H+ in membrane vesicles from normal and hyperthyroid animals was not influenced by membrane potential. H+ translocation or debinding was rate limiting for Na+–H+ exchange since Na+–Na+ exchange activity was greater than Na+–H+ exchange activity. Hyperthyroidism caused a proportional increase and hypothyroidism caused a proportional decrease in Na+–Na+ and Na+–H+ exchange. We conclude that hyperthyroidism leads to either an increase in the number of functional exchangers in the membrane or exactly proportional increases in the rate-limiting steps for Na+–Na+ and Na+–H+ exchange activity.  相似文献   

3.
Summary Renal brush border membrane vesicles (bbmv) from the aglomerular toadfish (Opsanus tau), isolated by differential precipitation, were tested for their ability to actively translocate (i) taurine, known to be secreted by the kidney of several marine teleosts, and (ii)l-alanine,l-glutamic acid, andd-glucose, solutes that are normally reabsorbed in the filtering nephron. Vesicular taurine uptake displayed a Na+ dependence. Transport was greatest under conditions of an inward-directed Na+ gradient, but a significant stimulation by Na+ over K+ could also be observed in the absence of a salt gradient. At high extravesicular K+, the addition of valinomycin reduced taurine uptake. Na+-dependent3H-taurine flux was almost completely inhibited by non-labeled taurine (tracer replacement) or -alanine, but was unaffected byl-alanine. Replacement of medium chloride by SCN or NO 3 in the presence of Na+ resulted in significantly lower uptake rates under both anion gradient and anion equilibrium conditions, whereas Br could almost fully substitute for the stimulatory Cl action. These results indicate the presence of an electrogenic Na+-cotransport mechanism with specificity for -amino acids in the toadfish renal brush border. Whether the system under physiological conditions mediates reabsorption or secretion of taurine remains to be determined. Toadfish bbmv also translocatedl-alanine andl-glutamic acid in a Na+-dependent manner. Possible roles for these most likely reabsorptive transport systems in a non-filtering kidney are discussed.d-glucose uptake, however, appeared to occur via Na+-independent pathways, since it was not affected by phlorizin in the presence of Na+, or by Na+ replacement.Abbreviation bbmv brush border membrane vesicles  相似文献   

4.
5.
Summary Loop diuretic-sensitive (Na+,K+,Cl)-cotransport activity was found to be present in basolateral membrane vesicles of surface and crypt cells of rabbit distal colon epithelium. The presence of grandients of all three ions was essential for optimal transport activity (Na+,K+) gradien-driven36Cl fluxes weree half-maximally inhibited by 0.14 m bumetanide and 44 m furosimide. While86Rb uptake rates showed hyperbolic dependencies on Na+ and K+ concentrations with Hill coefficients of 0.8 and 0.9, respectively, uptakes were sigmoidally related to the Cl concentration, Hill coefficient 1.8, indicating a 1 Na+: 1 K+:2 Cl stoichiometry of ion transport.The interaction of putative (Na+, K+, Cl)-cotransport proteins with loop diuretics was studied from equilibrium-binding experiments using [3H]-bumetanide. The requirement for the simulataneous presence of Na+,K+, and Cl, saturability, reversibility, and specificity for diuretics suggest specific binding to the (Na+, K+, Cl)-cotransporter. [3H]-bumetanide recognizes a minimum of two classes of diuretic receptors sites. high-affinity (K D1=0.13 m;B max1 =6.4 pmol/mg of protein) and low-affinity (K D2=34 m;B max2=153 pmol/mg of protein) sites. The specific binding to the high-affinity receptor was found to be linearly competitive with Cl (K 1=60mm), whereas low-affinity sites seem to be unaffected by Cl. We have shown that only high-affinity [3H]-bumetanide binding correlates with transport inhibition raising questions on the physiological significance of diuretic receptor site heterogeneity observed in rabbit distal colon epithelium.  相似文献   

6.
Summary The bumetanide-sensitive uptake of Na+, K(Rb) and Cl has been measured at 21°C in ferrent red cells treated with (SITS+DIDS) to minimize anion flux via capnophorin (Band 3). During the time course of the influx experiments tracer uptake was a first-order rate process. At normal levels of external Na+ (150mm) the bumetanide-sensitive uptake of K+ was dependent on Cl and represented almost all of the K+ uptake, the residual flux demonstrating linear concentration dependence. The uptake of Na+ and Cl was only partially inhibited by bumetanide indicating that pathways other than (Na+K+Cl) cotransport participate in these fluxes. The diuretic-sensitive uptake of Na+ or Cl was, however, abolished by the removal of K+ or the complementary ion indicating that bumetanide-sensitive fluxes of Na+, K+ and Cl are closely coupled. At very low levels of [Na] o (<5mm) K+ influx demonstrated complex kinetics, and there was evidence of the unmasking of a bumetanide-sensitive Na+-independent K+ transport pathway. The stoichiometry of bumetanide-sensitive tracer uptake was 2Na1K3Cl both in cells suspended in a low and a high K+-containing medium. The bumetanide-sensitive flux was markedly reduced by ATP depletion. We conclude that a bumetanide-sensitive cotransport of (2Na1K3Cl) occurs as an electroneutral complex across the ferret red cell membrane.  相似文献   

7.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

8.
Summary Ion dependence and electrogenicity of taurine uptake were studied in rabbit renal outer cortical brush-border membrane vesicles isolated by differential precipitation. Na+-d-glucose cotransport was followed in parallel to monitor changes in the membrane potential. Concentrative taurine flux was dependent on a chemical and/or an electrical Na+ gradient (K+ diffusion potential) and could be completely inhibited by other -amino acids. It displayed a specific anion requirement (ClBrSCN>I>NO 3 ). At chemical Na+ equilibrium, Cl gradients, depending on their orientation, stimulated or inhibited taurine uptake more than could be attributed solely to electrical anion effects, although a Cl gradient alone could not energize an overshoot. Furthermore, taurine tracer exchange was significantly stimulated by Cl as well as Br. The Cl stoichiometry was found to be one, whereas taurine transport, in the presence of Cl, was sigmoidally related to the Na+ concentration, resulting in a coupling ratio of 2 to 3 Na+: 1 taurine. Upon Cl replacement with gluconate, taurine uptake showed a reduced potential sensitivity and was no longer detectably affected by the Na+ concentration (up to 150mm). These results suggest a 2 to 3 Na+:1 Cl:1 taurine cotransport mechanism driven mainly by the Na+ gradient, which is sensitive to the membrane potential due to a negatively charged empty carrier. Cl appears to stimulate taurine flux primarily by facilitating the formation of the translocated solute-carrier complex.  相似文献   

9.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

10.
Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK 1 of 2×10–8 m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 m and 53mm.These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.  相似文献   

11.
Summary An electrogenic K+–Na+ symport with a high affinity for K+ has been found inChara (Smith & Walker, 1989). Under voltage-clamp conditions, the symport shows up as a change in membrane current upon adding either K+ or Na+ to the bathing medium in the presence of the other. Estimation of kinetic parameters for this transport has been difficult when using intact cells, since K+–Na+ current changes show a rapid falling off with time at K+ concentrations above 50 m. Cytoplasm-enriched cell fragments are used to overcome this difficulty since they do not show the rapid falling off of current change seen with intact cells. Current-voltage curves for the membrane in the absence or presence of either K+ or Na+ are obtained, yielding difference current-voltage curves which isolate the symport currents from other transport processes. The kinetic parameters describing this transport are found to be voltage dependent, withK m for K+ ranging from 30 down to 2 m as membrane potential varies from –140 to –400 mV, andK m for Na+ ranging between 470 and 700 m over a membrane potential range of –140 to –310 mV.Two different models for this transport system have been investigated. One of these involves the simultaneous transport of both the driver and substrate ions across the membrane, while the other allows for the possibility of the two ions being transported consecutively in two distinct reaction steps. The experimental results are shown to be consistent with either of these cotransport models, but they do suggest that binding of K+ occurs before that of Na+, and that movement of charge across the membrane (the voltage-dependent step) occurs when the transport protein has neither K+ nor Na+ bound to it.  相似文献   

12.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

13.
Summary The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO 3 -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated twofold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring 15 min of acinar incubation with carbachol to reach completion, and ws blocked by the presence of the muscarinic antagonist atropine (2×10–5 m) in the pretreatment medium. The effect of carbachol was dose dependent withK 0.53×10–6 m. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the -adrenergic agonist epinephrine, but not with the -adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increasedapparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluidsecretory response of the rat parotid.  相似文献   

14.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

15.
Summary The studies reported here were carried out to characterize further previously described changes in membrane localized amino acid transport associated with simian virus 40 transformation of the mammalian cell line, Balb/c3T3. Membrane vesicles were prepared from confluent cultures of both simian virus 40 transformed Balb/c3T3 (SV3T3) and the untransformed parent line, Balb/c3T3 (3T3). An initial, externally imposed out>in, 100mm Na+ gradient produces acceleration of early ingress of -aminoisobutyric acid (AIB) in vesicles from both cell lines, but transient, concentrative uptake (overshooting) only in SV3T3 vesicles. Early ingress ofl-leucine is also accelerated in SV3T3 vesicles by a Na+ gradient, and overshooting is also demonstrable.Na+-gradient independent AIB permeability of SV3T3 and 3T3 membranes was estimated using uptake data, a first order rate equation and measurements of vesicle size derived from quasi-elastic light-scattering studies. AIB permeability of SV3T3 membranes is greater than that of 3T3 membranes (113 Å/min and 43 Å/min, respectively), suggesting that overshooting in 3T3 vesicles is not attenuated by a Na+-independent AIB leak. Na+ permeability of the two membranes is similar, ruling out the possibility that a slower rate of Na+ equilibration across the SV3T3 membrane allows development of the overshoot.In SV3T3 vesicles the height of a Na+-gradient dependent overshoot varies with the initial [Na+] o /[Na+] i ratio, and [Na+] o /[Na+] i is linearly related to ln AIB uptake at overshoot peak/AIB uptake at equilibrium, consistent with the possibility that for [Na+] o /[Na+] i ratios in the range studied, AIB overshoot is energized by a constant proportion of the energy available from the initial electrochemical gradient for Na+.These results are consistent with the possibility that Na+-gradient dependent overshooting in SV3T3 vesicles is produced by Na+-amino acid carrier interactions resulting in either an increase in maximum transport velocity or an incrase in carrier affinity for AIB.Abbreviations used 3T3 Balb/c3T3 - SV3T3 simian virus 40 transformed Balb/c3T3 - AIB -aminoisobutyric acid  相似文献   

16.
Summary After swelling in hyposmotic solution, Ehrlich ascites tumor cells shrink towards their original volume. Upon restoration of isosmolality (300 mOsm) the cells initially shrink but subsequently recover volume. This regulatory volume increase (RVI) is completely blocked when [Na+] o or [Cl] o is reduced by 50% in the presence of normal [K+] o . With normal [NaCl] o but less than 2 mm [K+] o , not only is volume recovery blocked but the cells lose KCl and shrink. When [K+] o is increased to 5 mm there is a rapid net uptake of K+ and Cl which results in volume recovery. This suggests that the reswelling phase requires the simultaneous presence of Na+, K+, and Cl. Although ouabain has no effect on volume recovery, bumetanide completely blocks RVI by inhibiting a cotransport pathway that mediates the net uptake of Na+, K+ and Cl in the ratio of 1Na1K2Cl. Na+ that accumulates is then replaced by K+ via the Na/K pump.I wish to thank my colleague, Dr. Thomas C. Smith for advice and helpful comments during the course of these studies. The excellent technical assistance provided by Rebecca Corcoran-Merrill is gratefully acknowledged.This investigation was supported by Grant CA 32927 from the National Cancer Institute, U.S. Public Health Service.  相似文献   

17.
Summary The developmental maturation of Na+–H+ antiporter was determined using a well-validated brush-border membrane vesicles (BBMV's) technique. Na+ uptake represented transport into an osmotically sensitive intravesicular space as evidenced by an osmolality study at equilibrium. An outwardly directed pH gradient (pH inside/pH outside=5.2/7.5) significantly stimulated Na+ uptake compared with no pH gradient conditions at all age groups; however, the magnitude of stimulation was significantly different between the age groups. Moreover, the imposition of greater pH gradient across the vesicles resulted in marked stimulation of Na+ uptake which increased with advancing age. Na+ uptake represented an electroneutral process.The amiloride sensitivity of the pH-stimulated Na+ uptake was investigated using [amiloride] 10–2–10–5 m. At 10–3 m amiloride concentration, Na+ uptake under pH gradient conditions was inhibited 80, 45, and 20% in BBMV's of adolescent, weanling and suckling rats, respectively. Kinetic studies revealed aK m for amiloride-sensitive Na+ uptake of 21.8±6.4, 24.9±10.9 and 11.8±4.17mm andV max of 8.76±1.21, 5.38±1.16 and 1.99±0.28 nmol/mg protein/5 sec in adolescent, weanling and suckling rats, respectively. The rate of pH dissipation, as determined by the fluorescence quenching of acridine orange, was similar across membrane preparation of all age groups studied. These findings suggest for the first time the presence of an ileal brush-border membrane Na+–H+ antiporter system in all ages studied. This system exhibits changes in regard to amiloride sensitivity and kinetic parameters.  相似文献   

18.
Summary Taurine transport was investigated in brush border membrane vesicles isolated from renal tubules of the winter flounder (Pseudopleuronectes americanus). Taurine uptake by the vesicles was greater in the presence of NaCl as compared to uptake in KCl. The Na+-dependent taurine transport was electrogenic and demonstrated tracer replacement and inhibition by -alanine and HgCl2, indicating the presence of Na+-dependent, carrier-mediated taurine transport. In contrast to Na+-dependent taurine transport across the basolateral membrane, there was not a specific Cl dependency for transport in the brush border membrane. No evidence was obtained for Na+-independent carrier-mediated taurine transport. The possible involvement of the brush border Na+-dependent transport system in the net secretion of taurine from blood to tubular lumen in vivo (Schrock et al. 1982) is discussed.  相似文献   

19.
Summary The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (K M for K 0 + =3.5mm;J max=30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl-dependent (Na++K+) cotransport system (K M for K 0 + =6.8mm;J max=20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+1Na+2Cl, the exchange of K i + for K 0 + . The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

20.
Summary In rabbit gallbladder epithelium, a Na+/H+, Cl/HCO 3 double exchange and a Na+–Cl symport are both present, but experiments on intact tissue cannot resolve whether the two transport systems operate simultaneously. Thus, isolated apical plasma membrane vesicles were prepared. After preloading with Na+, injection into a sodium-free medium caused a stable intravesicular acidification (monitored with the acridine orange fluorescence quenching method) that was reversed by Na+ addition to the external solution. Although to a lesser extent, acidification took place also in experiments with an electric potential difference (PD) equal to 0. If a preset pH difference (pH) was imposed ([H+]in>[H+]out, PD=0), the addition of Na-gluconate to the external solution caused pH dissipation at a rate that followed saturation kinetics. Amiloride (10–4 m) reduced the pH dissipation rate. Taken together, these data indicate the presence of Na+ and H+ conductances in addition to an amiloride-sensitive, electroneutral Na+/H+ exchange.An inwardly directed [Cl] gradient (PD=0) did not induce intravesicular acidification. Therefore, in this preparation, there was no evidence for the presence of a Cl/OH exchange.When both [Na+] and [Cl] gradients (outwardly directed, PD=0) were present, fluorescence quenching reached a maximum 20–30 sec after vesicle injection and then quickly decreased. The decrease was not observed in the presence of a [Na+] gradient alone or the same [Na+] gradient with Cl at equal concentrations at both sides. Similarly, the decrease was abolished in the presence of both Na+ and Cl concentration gradients and hydrochlorothiazide (5×10–4 m). The decrease was not influenced by an inhibitor of Cl/OH exchange (10–4 m furosemide) or of Na+–K+–2Cl symport (10–5 m bumetanide).We conclude that a Na+/H+ exchange and a Na+–Cl symport are present and act simultaneously. This suggests that in intact tissue the Na+–Cl symport is also likely to work in parallel with the Na+/H+ exchange and does not represent an induced homeostatic reaction of the epithelium when Na+/H+ exchange is inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号