首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Yu J  Chau KF  Vodyanik MA  Jiang J  Jiang Y 《PloS one》2011,6(3):e17557
Genetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) could offer replenishable cell sources for transplantation therapies. To fulfill their promises, human iPSCs will ideally be free of exogenous DNA (footprint-free), and be derived and cultured in chemically defined media free of feeder cells. Currently, methods are available to enable efficient derivation of footprint-free human iPSCs. However, each of these methods has its limitations. We have previously derived footprint-free human iPSCs by employing episomal vectors for transgene delivery, but the process was inefficient and required feeder cells. Here, we have greatly improved the episomal reprogramming efficiency using a cocktail containing MEK inhibitor PD0325901, GSK3β inhibitor CHIR99021, TGF-β/Activin/Nodal receptor inhibitor A-83-01, ROCK inhibitor HA-100 and human leukemia inhibitory factor. Moreover, we have successfully established a feeder-free reprogramming condition using chemically defined medium with bFGF and N2B27 supplements and chemically defined human ESC medium mTeSR1 for the derivation of footprint-free human iPSCs. These improvements enabled the routine derivation of footprint-free human iPSCs from skin fibroblasts, adipose tissue-derived cells and cord blood cells. This technology will likely be valuable for the production of clinical-grade human iPSCs.  相似文献   

2.
Recent advances in reprogramming allow us to turn somatic cells into human induced pluripotent stem cells (hiPSCs). Disease modeling using patient-specific hiPSCs allows the study of the underlying mechanism for pathogenesis, also providing a platform for the development of in vitro drug screening and gene therapy to improve treatment options. The promising potential of hiPSCs for regenerative medicine is also evident from the increasing number of publications (>7000) on iPSCs in recent years. Various cell types from distinct lineages have been successfully used for hiPSC generation, including skin fibroblasts, hematopoietic cells and epidermal keratinocytes. While skin biopsies and blood collection are routinely performed in many labs as a source of somatic cells for the generation of hiPSCs, the collection and subsequent derivation of hair keratinocytes are less commonly used. Hair-derived keratinocytes represent a non-invasive approach to obtain cell samples from patients. Here we outline a simple non-invasive method for the derivation of keratinocytes from plucked hair. We also provide instructions for maintenance of keratinocytes and subsequent reprogramming to generate integration-free hiPSC using episomal vectors.  相似文献   

3.
Mammalian cells can be reprogrammed into induced pluripotent stem cells (iPSCs), a valuable tool for in vitro disease modeling and regenerative medicine. These applications demand for iPSCs devoid of reprogramming factor transgenes, but current procedures for the derivation of transgene-free iPSCs are inefficient and cumbersome. Here, we describe a new approach for the simple derivation of transgene-free iPSCs by the sequential use of two DNA recombinases, C31 Integrase and Cre, to control the genomic insertion and excision of a single, non-viral reprogramming vector. We show that such transgene-free iPSCs exhibit gene expression profiles and pluripotent developmental potential comparable to genuine, blastocyst-derived embryonic stem cells. As shown by a reporter iPSC line for the differentiation into midbrain dopaminergic neurons, the dual recombinase approach offers a simple and efficient way to derive transgene-free iPSCs for studying disease mechanisms and cell replacement therapies.  相似文献   

4.
Induced pluripotent stem(iPS) cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs) are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cell...  相似文献   

5.
6.
Induced pluripotent stem(iPS)cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs)are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentivirai expressed reprogramming factors.In our study,iPS cells expressed common pluripotency markers,displayed human embryonic stern cells(hESCs)morphology and unmethylated promoters of NANOG and OCT4.These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.  相似文献   

7.
In addition to being an attractive source for cell replacement therapy, human induced pluripotent stem cells (iPSCs) also have great potential for disease modeling and drug development. During the recent several years, cell reprogramming technologies have evolved to generate virus-free and integration-free human iPSCs from easily accessible sources such as patient skin fibroblasts and peripheral blood samples. Hematopoietic cells from umbilical cord blood banks and Epstein Barr virus (EBV) immortalized B lymphocyte repositories represent alternative sources for human genetic materials of diverse backgrounds. Ability to reprogram these banked blood cells to pluripotency and differentiate them into a variety of specialized and functional cell types provides valuable tools for studying underlying mechanisms of a broad range of diseases including rare inherited disorders. Here we describe the recent advances in generating disease specific human iPSCs from these different types of hematopoietic cells and their potential applications in disease modeling and regenerative medicine.  相似文献   

8.
Adipose tissue is an abundantly available source of proliferative and multipotent mesenchymal stem cells with promising potential for regenerative therapeutics. We previously demonstrated that both human and mouse adipose-derived stem cells (ASCs) can be reprogrammed into induced pluripotent stem cells (iPSCs) with efficiencies higher than those that have been reported for other cell types. The ASC-derived iPSCs can be generated in a feeder-independent manner, representing a unique model to study reprogramming and an important step toward establishing a safe, clinical grade of cells for therapeutic use. In this study, we provide a detailed protocol for isolation, preparation and transformation of ASCs from fat tissue into mouse iPSCs in feeder-free conditions and human iPSCs using feeder-dependent or feeder/xenobiotic-free processes. This protocol also describes how ASCs can be used as feeder cells for maintenance of other pluripotent stem cells. ASC derivation is rapid and can be completed in <1 week, with mouse and human iPS reprogramming times averaging 1.5 and 2.5 weeks, respectively.  相似文献   

9.
10.
In addition to being an attractive source for cell replacement therapy, human induced pluripotent stem cells (iPSCs) also have great potential for disease modeling and drug development. During the recent several years, cell reprogramming technologies have evolved to generate virus-free and integration-free human iPSCs from easily accessible sources such as patient skin fibroblasts and peripheral blood samples. Hematopoietic cells from umbilical cord blood banks and Epstein Barr virus (EBV) immortalized B lymphocyte repositories represent alternative sources for human genetic materials of diverse backgrounds. Ability to reprogram these banked blood cells to pluripotency and differentiate them into a variety of specialized and functional cell types provides valuable tools for studying underlying mechanisms of a broad range of diseases including rare inherited disorders. Here we describe the recent advances in generating disease specific human iPSCs from these different types of hematopoietic cells and their potential applications in disease modeling and regenerative medicine.Key words: induced pluripotent stem cells (iPSCs), blood, B lymphocytes, hematopoietic differentiation, hepatic differentiation, disease modeling, drug testing  相似文献   

11.
Chou BK  Mali P  Huang X  Ye Z  Dowey SN  Resar LM  Zou C  Zhang YA  Tong J  Cheng L 《Cell research》2011,21(3):518-529
To identify accessible and permissive human cell types for efficient derivation of induced pluripotent stem cells (iPSCs), we investigated epigenetic and gene expression signatures of multiple postnatal cell types such as fibroblasts and blood cells. Our analysis suggested that newborn cord blood (CB) and adult peripheral blood (PB) mononuclear cells (MNCs) display unique signatures that are closer to iPSCs and human embryonic stem cells (ESCs) than age-matched fibroblasts to iPSCs/ESCs, thus making blood MNCs an attractive cell choice for the generation of integration-free iPSCs. Using an improved EBNA1/OriP plasmid expressing 5 reprogramming factors, we demonstrated highly efficient reprogramming of briefly cultured blood MNCs. Within 14 days of one-time transfection by one plasmid, up to 1000 iPSC-like colonies per 2 million transfected CB MNCs were generated. The efficiency of deriving iPSCs from adult PB MNCs was approximately 50-fold lower, but could be enhanced by inclusion of a second EBNA1/OriP plasmid for transient expression of additional genes such as SV40 T antigen. The duration of obtaining bona fide iPSC colonies from adult PB MNCs was reduced to half (~14 days) as compared to adult fibroblastic cells (28-30 days). More than 9 human iPSC lines derived from PB or CB blood cells are extensively characterized, including those from PB MNCs of an adult patient with sickle cell disease. They lack V(D)J DNA rearrangements and vector DNA after expansion for 10-12 passages. This facile method of generating integration-free human iPSCs from blood MNCs will accelerate their use in both research and future clinical applications.  相似文献   

12.
Breakthroughs in cell fate conversion have made it possible to generate large quantities of patient-specific cells for regenerative medicine. Due to multiple advantages of peripheral blood cells over fibroblasts from skin biopsy, the use of blood mononuclear cells (MNCs) instead of skin fibroblasts will expedite reprogramming research and broaden the application of reprogramming technology. This review discusses current progress and challenges of generating induced pluripotent stem cells (iPSCs) from peripheral blood MNCs and of in vitro and in vivo conversion of blood cells into cells of therapeutic value, such as mesenchymal stem cells, neural cells and hepatocytes. An optimized design of lentiviral vectors is necessary to achieve high reprogramming efficiency of peripheral blood cells. More recently, non-integrating vectors such as Sendai virus and episomal vectors have been successfully employed in generating integration-free iPSCs and somatic stem cells.  相似文献   

13.
14.
15.
《Biophysical journal》2020,118(9):2086-2102
Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) generates valuable resources for disease modeling, toxicology, cell therapy, and regenerative medicine. However, the reprogramming process can be stochastic and inefficient, creating many partially reprogrammed intermediates and non-reprogrammed cells in addition to fully reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby disrupting each cell’s microenvironment. Here, we develop a micropatterned substrate that allows for dynamic live-cell microscopy of hundreds of cell subpopulations undergoing reprogramming while preserving many of the biophysical and biochemical cues within the cells’ microenvironment. On this substrate, we were able to both watch and physically confine cells into discrete islands during the reprogramming of human somatic cells from skin biopsies and blood draws obtained from healthy donors. Using high-content analysis, we identified a combination of eight nuclear characteristics that can be used to generate a computational model to predict the progression of reprogramming and distinguish partially reprogrammed cells from those that are fully reprogrammed. This approach to track reprogramming in situ using micropatterned substrates could aid in biomanufacturing of therapeutically relevant iPSCs and be used to elucidate multiscale cellular changes (cell-cell interactions as well as subcellular changes) that accompany human cell fate transitions.  相似文献   

16.
Wang F  Yin Y  Ye X  Liu K  Zhu H  Wang L  Chiourea M  Okuka M  Ji G  Dan J  Zuo B  Li M  Zhang Q  Liu N  Chen L  Pan X  Gagos S  Keefe DL  Liu L 《Cell research》2012,22(4):757-768
Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc(-/-) and Terc(+/-)) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.  相似文献   

17.
Induced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell‐like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used. Human dermal fibroblasts harvested from five different anatomical sites (neck, breast, arm, abdomen and thigh) were cultured and their morphology, proliferation, apoptotic rate, ability to migrate, expression of mesenchymal or epithelial markers, differentiation potential and production of growth factors were evaluated in vitro. Additionally, gene expression analysis was performed by real‐time PCR including genes typically expressed by mesenchymal cells. Finally, fibroblasts isolated from different anatomic sites were reprogrammed to iPSCs by integration‐free method. Intriguingly, while the morphology of fibroblasts derived from different anatomic sites differed only slightly, other features, known to affect cell reprogramming, varied greatly and in accordance with anatomic site of origin. Accordingly, difference also emerged in fibroblasts readiness to respond to reprogramming and ability to form colonies. Therefore, as fibroblasts derived from different anatomic sites preserve positional memory, it is of great importance to accurately evaluate and select dermal fibroblast population prior to induce reprogramming.  相似文献   

18.
Induced pluripotent stem cells are different from embryonic stem cells as shown by epigenetic and genomics analyses. Depending on cell types and culture conditions, such genetic alterations can lead to different metabolic phenotypes which may impact replication rates, membrane properties and cell differentiation. We here applied a comprehensive metabolomics strategy incorporating nanoelectrospray ion trap mass spectrometry (MS), gas chromatography-time of flight MS, and hydrophilic interaction- and reversed phase-liquid chromatography-quadrupole time-of-flight MS to examine the metabolome of induced pluripotent stem cells (iPSCs) compared to parental fibroblasts as well as to reference embryonic stem cells (ESCs). With over 250 identified metabolites and a range of structurally unknown compounds, quantitative and statistical metabolome data were mapped onto a metabolite networks describing the metabolic state of iPSCs relative to other cell types. Overall iPSCs exhibited a striking shift metabolically away from parental fibroblasts and toward ESCs, suggestive of near complete metabolic reprogramming. Differences between pluripotent cell types were not observed in carbohydrate or hydroxyl acid metabolism, pentose phosphate pathway metabolites, or free fatty acids. However, significant differences between iPSCs and ESCs were evident in phosphatidylcholine and phosphatidylethanolamine lipid structures, essential and non-essential amino acids, and metabolites involved in polyamine biosynthesis. Together our findings demonstrate that during cellular reprogramming, the metabolome of fibroblasts is also reprogrammed to take on an ESC-like profile, but there are select unique differences apparent in iPSCs. The identified metabolomics signatures of iPSCs and ESCs may have important implications for functional regulation of maintenance and induction of pluripotency.  相似文献   

19.
Although significant advancement has been made in the induced pluripotent stem cell (iPSC) field, current methods for iPSC derivation are labor intensive and costly. These methods involve manual selection, expansion, and characterization of multiple clones for each reprogrammed cell sample and therefore significantly hampers the feasibility of studies where a large number of iPSCs need to be derived. To develop higher throughput iPSC reprogramming methods, we generated iPSCs as a pooled culture using rigorous cell surface pluripotent marker selection with TRA-1-60 or SSEA4 antibodies followed by Magnetic Activated Cell Sorting (MACS). We observed that pool-selected cells are similar or identical to clonally derived iPSC lines from the same donor by all criteria examined, including stable expression of endogenous pluripotency genes, normal karyotype, loss of exogenous reprogramming factors, and in vitro spontaneous and lineage directed differentiation potential. This strategy can be generalized for iPSC generation using both integrating and non-integrating reprogramming methods. Our studies provide an attractive alternative to clonal derivation of iPSCs using rigorously selected cell pools and is amenable to automation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号