首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Activities of promoters from the capsanthin/capsorubin synthase and fibrillin genes, which are molecular markers for ripening in the non-climacteric pepper fruits, have been studied in transgenic tomato plants that produce fruits of the climacteric type (characterized by an increase in respiration and ethylene production). The promoters of both genes were strongly upregulated during tomato fruit ripening in a manner similar to the induction of these genes in pepper fruits. Induction occurred at the mature green stage preceding ripening (a stage when ethylene production and respiration are known to rise in tomato fruits). Ethylene positively influenced the expression of both genes in tomato. Other plant growth regulators, namely abscisic acid, auxin and polyamines, did not alter gene expression. In contrast, water loss strongly induced both promoters. This dehydration-mediated gene induction was inhibited by mitochondrial respiration inhibitors (mainly of the alternative oxidase). A slight positive effect with light, apparently not linked to normal photosynthesis but rather to photooxidative stress, was also observed. Taken together, the data indicate that activation of oxidase systems, leading to changes in the cellular redox balance, mediates the induction of both genes in tomato. Various cellular compartments are likely to be contributors to this process, which leads to the developmental regulation of nuclear genes encoding plastid-located proteins.  相似文献   

2.
3.
4.
5.
Changes in respiratory rate and the effects of respiratory inhibitorson respiration were determined in apple (Malus sylvestris cv. Delicious) and red pepper (Capsicum fructescens) fruits dusting different stages of development and ripening.The results showed that there was an abrupt rise in respiration daring ripening inapple fruit, but the respiration of the red pepper declined continuously throughout theripening period. Thus the apple is climacteric and the red pepper is non-climacteric fruit. The respiration of apple fruit was sensitive to KCN (1 mM) during the period ofdevelopment but changed to CLAM-sensitive and CN-resistant during preclimactericand climacteric phases, indicating that a diversion of respiratory pathways from the cy-tochrome path to the alternative path has occurred. The respiration of the red pepperfruit was CN-sensitive thoughout the whole period of fruit ripening, suggesting thatthe operation of the CN-resistant path was insignificant. Slices from climacteric apple fruits developed induced .respiration after aging, bothKCN and CLAM (1 mM) inhibited the induced respiratic considerably. However, slices from red pepper fruits showed no evidence of induced respiration after aging. Slices from climacteric apple fruits infiltrated with 3 mM CLAM before aging, reducedthe peak of the induced respiration by about 30%, indicating that the development ofinduced respiration was suppressed by the presence of CLAM. The above results indicated that the: climacteric fruits were characterized by diversion of traffic from the cytochrome path to the alternative path during ripening andby the development of induced respiration after slicing and aging. While in nonclimacteric fruits no .diversion of electron transport path was observed during ripening andno induced respiration occurred after aging. Although both the eytochrome and alternative pathways were present in the tissue of red pepper fruits, the alternative pathwas not operating except when the cytochrome path was blocked or was saturated by electron flow.  相似文献   

6.
Downregulation of RdDM during strawberry fruit ripening   总被引:1,自引:0,他引:1  

Background

Recently, DNA methylation was proposed to regulate fleshy fruit ripening. Fleshy fruits can be distinguished by their ripening process as climacteric fruits, such as tomatoes, or non-climacteric fruits, such as strawberries. Tomatoes undergo a global decrease in DNA methylation during ripening, due to increased expression of a DNA demethylase gene. The dynamics and biological relevance of DNA methylation during the ripening of non-climacteric fruits are unknown.

Results

Here, we generate single-base resolution maps of the DNA methylome in immature and ripe strawberry. We observe an overall loss of DNA methylation during strawberry fruit ripening. Thus, ripening-induced DNA hypomethylation occurs not only in climacteric fruit, but also in non-climacteric fruit. Application of a DNA methylation inhibitor causes an early ripening phenotype, suggesting that DNA hypomethylation is important for strawberry fruit ripening. The mechanisms underlying DNA hypomethylation during the ripening of tomato and strawberry are distinct. Unlike in tomatoes, DNA demethylase genes are not upregulated during the ripening of strawberries. Instead, genes involved in RNA-directed DNA methylation are downregulated during strawberry ripening. Further, ripening-induced DNA hypomethylation is associated with decreased siRNA levels, consistent with reduced RdDM activity. Therefore, we propose that a downregulation of RdDM contributes to DNA hypomethylation during strawberry ripening.

Conclusions

Our findings provide new insight into the DNA methylation dynamics during the ripening of non-climacteric fruit and suggest a novel function of RdDM in regulating an important process in plant development.
  相似文献   

7.
Ethylene and fruit ripening   总被引:13,自引:0,他引:13  
The latest advances in our understanding of the relationship between ethylene and fruit ripening are reviewed. Considerable progress has been made in the characterisation of genes encoding the key ethylene biosynthetic enzymes, ACC synthase (ACS) and ACC oxidase (ACO) and in the isolation of genes involved in the ethylene signal transduction pathway, particularly those encoding ethylene receptors ( ETR ). These have allowed the generation of transgenic fruit with reduced ethylene production and the identification of the Nr tomato ripening mutant as an ethylene receptor mutant. Through these tools, a clearer picture of the role of ethylene in fruit ripening is now emerging. In climacteric fruit, the transition to autocatalytic ethylene production appears to result from a series of events where developmentally regulated ACO and ACS gene expression initiates a rise in ethylene production, setting in motion the activation of autocatalytic ethylene production. Differential expression of ACS and ACO gene family members is probably involved in such a transition. Finally, we discuss evidence suggesting that the NR ethylene perception and transduction pathway is specific to a defined set of genes expressed in ripening climacteric fruit and that a distinct ETR pathway regulates other ethylene-regulated genes in both immature and ripening climacteric fruit as well as in non-climacteric fruit. The emerging picture is one where both ethylene-dependent and -independent pathways coexist in both climacteric and non-climacteric fruits. Further work is needed in order to dissect the molecular events involved in individual ripening processes and to understand the regulation of the expression of both ethylene-dependent and -independent genes.  相似文献   

8.
9.
Recent advances in fruit development and ripening: an overview   总被引:5,自引:0,他引:5  
  相似文献   

10.
11.
12.
13.
Different factors affect the quality of melon fruit and among them long shelf life is critical from the consumer’s point of view. In melon, cultivars showing both climacteric and non-climacteric ripening types are found. In this study we have investigated climacteric ripening and fruit softening using a collection of near-isogenic lines (NILs) derived from the non-climacteric melon parental lines PI 161375 (SC) and “Piel de Sapo” (PS). Surprisingly, we found that QTL eth3.5 in NIL SC3-5b induced a climacteric-ripening phenotype with increased respiration and ethylene levels. Data suggest that the non-climacteric phenotypes from PI 161375 and “Piel de Sapo” may be the result of mutations in different genes. Several QTLs for fruit flesh firmness were also detected. Candidate genes putatively involved in ethylene regulation, biosynthesis and perception and cell wall degradation were mapped and some colocations with QTLs were observed. These results may provide additional data towards understanding of non-climacteric ripening in melon.  相似文献   

14.
Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis, which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expres- sion during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition, there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.  相似文献   

15.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

16.
On basis of fruit differential respiration and ethylene effects, climacteric and non-climacteric fruits have been classically defined. Over the past decades, the molecular mechanisms of climacteric fruit ripening were abundantly described and found to focus on ethylene perception and signaling transduction. In contrast, until our most recent breakthroughs, much progress has been made toward understanding the signaling perception and transduction mechanisms for abscisic acid (ABA) in strawberry, a model for non-climacteric fruit ripening. Our reports not only have provided several lines of strong evidences for ABA-regulated ripening of strawberry fruit, but also have demonstrated that homology proteins of Arabidopsis ABA receptors, including PYR/PYL/RCAR and ABAR/CHLH, act as positive regulators of ripening in response to ABA. These receptors also trigger a set of ABA downstream signaling components, and determine significant changes in the expression levels of both sugar and pigment metabolism-related genes that are closely associated with ripening. Soluble sugars, especially sucrose, may act as a signal molecular to trigger ABA accumulation through an enzymatic action of 9-cis-epoxycarotenoid dioxygenase 1 (FaNCED1). This mini-review offers an overview of these processes and also outlines the possible, molecular mechanisms for ABA in the regulation of strawberry fruit ripening through the ABA receptors.  相似文献   

17.
Ethylene has long been regarded as the main regulator of ripening in climacteric fruits. The characterization of a few tomato mutants, unable to produce climacteric ethylene and to ripen their fruits even following treatments with exogenous ethylene, has shown that other factors also play an important role in the control of climacteric fruit ripening. In climacteric peach and tomato fruits it has been shown that, concomitant with ethylene production, increases in the amount of auxin can also be measured. In this work a genomic approach has been used in order to understand if such an auxin increase is functional to an independent role played by the hormone during ripening of the climacteric peach fruits. Besides the already known indirect activity on ripening due to its up-regulation of climacteric ethylene synthesis, it has been possible to show that auxin plays a role of its own during ripening of peaches. In fact, the hormone has shown the ability to regulate the expression of a number of different genes. Moreover, many genes involved in biosynthesis and transport and, in particular, the signalling (receptors, Auxin Response Factors and Aux/IAA) of auxin had increased expression in the mesocarp during ripening, thus strengthening the idea that this hormone is actively involved in the ripening of peaches. This study has also demonstrated the existence of an important cross-talk between auxin and ethylene, with genes in the auxin domain regulated by ethylene and genes in the ethylene domain regulated by auxin.  相似文献   

18.
Han SE  Seo YS  Kim D  Sung SK  Kim WT 《Plant cell reports》2007,26(8):1321-1331
Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is β-cyanoalanine synthase (β-CAS). As little is known about the molecular function of β-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple β-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as β-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, β-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号