首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A recent study suggested sheep liver 6-phosphogluconate dehydrogenase (6PGDH) sees the oxidized and reduced cofactor differently [Cervellati, C., Dallocchio, F., Bergamini, C. M., and Cook, P. F. (2005) Biochemistry 44, 2432-2440]. Data were consistent with a rotation into the active site of the nicotinamide ring of NADP upon its reduction, resulting in a displacement of the 1-carboxylate of 3-keto-6PG better positioning it for decarboxylation, and further suggested a role of the cofactor in generating the precatalytic conformation of the enzyme. To further probe the role of the cofactor, multiple isotope effects were measured for the enzyme with mutations of the two residues that directly interact with the nicotinamide ring of NADP+, methionine 13 and glutamate 131. Kinetic and isotope effect data obtained in this study will thus be interpreted in terms of a mechanism that includes the rotation of the nicotinamide ring. The M13V, M13Q, M13C, and E131A mutant enzymes were characterized with respect to their kinetic parameters, deuterium, 13C, multiple deuterium/13C isotope effects, and the kinetics of utilization of 2-deoxy-6PG. Data suggest the position of the nicotinamide ring is important in identifying the open and closed conformations of the enzyme, with the latter optimal for catalysis. The 6PGDH reaction provides an excellent example of the use of substrate binding energy to drive catalysis.  相似文献   

2.
Li L  Zhang L  Cook PF 《Biochemistry》2006,45(42):12680-12686
Crystal structures of 6-phosphogluconate dehydrogenase (6PGDH) from sheep liver indicate that S128 and N187 are within hydrogen-bonding distance of 6PG in the E:6PG binary complex and NADPH in the E:NADPH binary complex. In addition, H186 is also within hydrogen-bonding distance of NADPH in the E:NADPH binary complex, while in the E:6PG binary complex it is within hydrogen-bonding distance of S128 and close to N187. The structures suggest that this triad of residues may play a dual role during the catalytic reaction. Site-directed mutagenesis has been performed to mutate each of the three residues to alanine. All mutant enzymes exhibit a decrease in V/E(t) (the turnover number), ranging from 7- to 67-fold. An increase in the Km for 6PG (K(6PG)) was observed for S128A and H187A mutant enzymes, while for the H186A mutation, K(6PG) is decreased by a factor of 2. K(NADP) remains the same as the wild type enzyme for the S128A and H186A mutant enzyme, while it increases by 6-fold in the N187A mutant enzyme. An increased K(iNADPH) was measured for all of the mutant enzymes. The primary kinetic 13C-isotope effect is increased, while the primary deuterium kinetic isotope effect is decreased, indicating that the decarboxylation step has become more rate limiting under conditions where substrate is limiting. A quantitative analysis of the data suggests that the S128, H186, and N187 triad is multifunctional in the 6PGDH reaction and contributes as follows. The triad (1) participates in the precatalytic conformational change; (2) provides ground state binding affinity for 6PG and NADPH; and (3) affects the relative rates of reduction or decarboxylation of the 3-keto-6PG intermediate by anchoring the cofactor after hydride transfer, which is accompanied by the rotation of the nicotinamide ring around the N-glycosidic bond and displacement of C1 of 6PG, facilitating decarboxylation.  相似文献   

3.
6-Phosphogluconate dehydrogenase (6PGDH) is a key enzyme of the oxidative branch involved in the generation of NADPH and ribulose 5-phosphate. In the present work, we describe the cloning, sequencing and characterization of a 6PGDH gene from Leishmania (Leishmania) mexicana. The gene encodes a polypeptide chain of 479 amino acid residues with a predicted molecular mass of 52 kDa and a pI of 5.77. The recombinant protein possesses a dimeric quaternary structure and displays kinetic parameter values intermediate between those reported for Trypanosoma brucei and T. cruzi with apparent K(m) values of 6.93 and 5.2 μM for 6PG and NADP(+), respectively. The three-dimensional structure of the enzymes of Leishmania and T. cruzi were modelled from their amino acid sequence using the crystal structure of the enzyme of T. brucei as template. The amino acid residues located in the 6PGDH C-terminal region, which are known to participate in the salt bridges maintaining the protein dimeric structure, differed significantly among the enzymes of Leishmania, T. cruzi, and T. brucei. Our results strongly suggest that 6PGDH can be selected as a potential target for the development of new therapeutic drugs in order to improve existing chemotherapeutic treatments against these parasites.  相似文献   

4.
We have prepared a selectively deuterated dihydrofolate reductase in which all the aromatic protons except the C(2) protons of tryptophan have been replaced by deuterium and have examined the 1H NMR spectra of its complexes with folate, trimethoprim, methotrexate, NADP+, and NADPH. One of the four Trp C(2)-proton resonance signals (signal P at 3.66 ppm from dioxane) has been assigned to Trp-21 by examining the NMR spectrum of a selectively deuterated N-bromosuccinimide-modified dihydrofolate reductase. This signal is not perturbed by NADPH, indicating that the coenzyme is not binding close to the 2 position of Trp-21. This contrasts markedly with the 19F shift (2.7 ppm) observed for the 19F signal of Trp-21 in the NADPH complex with the 6-fluorotryptophan-labeled enzyme. In fact the crystal structure of the enzyme . methotrexate . NADPH shows that the carboxamide group of the reduced nicotinamide ring is near to the 6 position of Trp-21 but remote from its 2 position. The nonadditivity of the 1H chemical-shift contributions for signals tentatively assigned to Trp-5 and -133 indicates that these residues are influenced by ligand-induced conformational changes.  相似文献   

5.
6.
Reactive oxygen species (ROS) and oxidative stress have been considered in a variety of disease models, and cytochrome P450 (P450) enzymes have been suggested to be a source of ROS. Induction of P450s by phenobarbital (PB), beta-naphthoflavone (betaNF), or clofibrate in a mouse model increased ROS parameters in the isolated liver microsomes, but isoniazid treatment did not. However, when F(2)-isoprostanes (F(2)-IsoPs) were measured in tissues and urine, PB showed the strongest effect and betaNF had a measurable but weaker effect. The same trend was seen when an Nfr2-based transgene reporter sensitive to ROS was analyzed in the mice. This pattern had been seen earlier with F(2)-IsoPs both in vitro and in vivo with rats (Dostalek, M., Brooks, J. D., Hardy, K. D., Milne, G. L., Moore, M. M., Sharma, S., Morrow, J. D., and Guengerich, F. P. (2007) Mol. Pharmacol. 72, 1419-1424). One possibility for the general in vitro-in vivo discrepancy in oxidative stress found in both mice and rats is that PB treatment might attenuate protective systems. One potential candidate suggested by an mRNA microarray was nicotinamide N-methyltransferase. PB was found to elevate nicotinamide N-methyltransferase activity 3- to 4-fold in mice and rats and to attenuate levels of NAD(+), NADP(+), NADH, and NADPH in both species (20-40%), due to the enhanced excretion of (N-methyl)nicotinamide. PB also down-regulated glutathione peroxidase and glutathione reductase, which together constitute a key enzymatic system that uses NADPH in protecting against oxidative stress. These multiple effects on the protective systems are proposed to be more important than P450 induction in oxidative stress and emphasize the importance of studying in vivo models.  相似文献   

7.
Sequence alignment of pig mitochondrial NADP-dependent isocitrate dehydrogenase with eukaryotic (human, rat, and yeast) and Escherichia coli isocitrate dehydrogenases reveals that Tyr316 is completely conserved and is equivalent to the E. coli Tyr345, which interacts with the 2'-phosphate of NADP in the crystal structure [Hurley et al., Biochemistry 30 (1991) 8671-8678]. Lys321 is also completely conserved in the five isocitrate dehydrogenases. Either an arginine or lysine residue is found among the enzymes from other species at the position corresponding to the pig enzyme Arg314. While Arg323 is not conserved among all species, its proximity to the coenzyme site makes it a good candidate for investigation. The importance of these four amino acids to the function of pig mitochondrial NADP-isocitrate dehydrogenase was studied by site-directed mutagenesis. Mutants (R314Q, Y316F, Y316L, K321Q, and R323Q) were generated by a megaprimer polymerase chain reaction method. Wild-type and mutant enzymes were expressed in E. coli and purified to homogeneity. All mutant and wild-type enzymes exhibited comparable molecular weights indicative of the dimeric enzyme. Mutations do not cause an appreciable change in enzyme secondary structure as revealed by circular dichroism measurements. The kinetic parameters (V(max) and K(M) values) of K321Q and R323Q are similar to those of wild-type, indicating that Lys321 and Arg323 are not involved in enzyme function. R314Q exhibits a 10-fold increase in K(M) for NADP as compared to that of wild-type, while they have comparable V(max) values. These results suggest that Arg314 contributes to the affinity between the enzyme and NADP. The hydroxyl group of Tyr316 is not required for enzyme function since Y316F exhibits similar kinetic parameters to those of wild-type. Y316L shows a 4-fold increase in K(M) for NADP and a decrease in V(max) as compared to wild-type, suggesting that the aromatic ring of the Tyr of isocitrate dehydrogenase contributes to the affinity for coenzyme, as well as to catalysis. The K(i) for NAD of R314Q, Y316F, and Y316L is comparable to that of wild-type, indicating that the Arg314 and Tyr316 may be located near the 2'-phosphate of enzyme-bound NADP.  相似文献   

8.
Reimers, J. M., Huang, Q., Albe, K. R., and Wright, B. E. 1993. Purification and kinetic characterization of glucose-6-phosphate dehydrogenase from Dictyostelium discoideum. Experimental Mycology 17, 1-6. Glucose-6-phosphate dehydrogenase from Dictyostelium discoideum was purified 650-fold and kinetically characterized. The enzyme catalyzed the conversion of G6P + NADP to 6PG + NADPH stoichiometrically and irreversibly in vitro . The purified enzyme is specific for NADP. Michaelis constants for G6P and NADP were 0.040 and 0.011 mM, respectively. NADPH was found to be a competitive inhibitor with respect to NADP with a Ki of 0.006 mM and a noncompetitive inhibitor with respect to G6P. The data from initial velocity and product inhibition studies were consistent with a sequential mechanism.  相似文献   

9.
6-Phosphogluconate dehydrogenase (6PGDH), the third enzyme of the pentose phosphate pathway (PPP), is essential for biosyntheses and oxidative stress defence. It also has the function of depleting 6PG, whose accumulation induces cell senescence. 6PGDH is a proposed drug target for African trypanosomiasis caused by Trypanosoma brucei and for other microbial infections and cancer. Gel filtration, density gradient sedimentation, cross-linking and dynamic light scattering were used to assay the oligomerization state of T. brucei 6PGDH in the absence and presence of several ligands. The enzyme displays a dimer–tetramer equilibrium and NADPH (but not NADP) reduces the rate of approach to equilibrium, while 6PG is able to antagonize the NADPH effect. The different behaviour of the two forms of coenzyme appears to be related to the differences in ΔCp, with NADP binding ΔCp closer to what is expected of crystallographic structures, while NADPH ΔCp is three times larger. The estimated dimer–tetramer association constant is 1.5 · 106 M? 1, and the specific activity of the tetramer is about 3 fold higher than the specific activity of the dimer. Thus, cellular conditions promoting tetramer formation could allow an efficient clearing of 6PG. Experiments carried out on sheep liver 6PGDH indicate that tetramerization is a specificity of the parasite enzyme.  相似文献   

10.
Estimates of the activities (Vmax) of four enzymes that generate the coenzyme NADPH, an absolute requirement for tissue fatty-acid synthesis, and of the concentration of NADP plus NADPH were made in lines of mice differing in fat content. These lines had been selected from the same base population for 20 generations, and 3 high, 3 low replicates and 1 unselected control were used. Analyses were performed on liver and gonadal fat pad (GFP) of males at 5 and 10 weeks of age. In both the liver and the GFP, measurable activities of the four enzymes: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (IDH) and malic enzyme (ME) expressed per mg soluble protein were, with minor exceptions, higher in the Fat (F) than in the Lean (L) lines at both ages; the highest ratio being 2.2 for ME in the GFP. The relationships between these measurable activities (Vmax) and in vivo lipogenesis are not however known. When expressed per gram tissue, the ratios for F to L in the GFP were less than 1 in most cases, presumably because of the very different adipocyte numbers and/or sizes between the lines. There were no significant differences between the lines in the concentration of NADP plus NADPH per gram tissue in liver or GFP, suggesting that F lines converted NADP to NADPH faster than L lines. It is predicted that selection on the enzyme activities would be less efficient than direct selection at changing fat content.  相似文献   

11.
Commercially obtained fruits of Corylus avellana exhibit the characteristic loss of dormancy of this seed following chilling under moist conditions. The activities of cytosolic and organellar enzymes of pentose phosphate pathway in cotyledonary tissue were assayed throughout stratification and over a similar period in damp vermiculite at 20° C. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconic acid dehydrogenase (6PGDH) were both found in cytosolic extracts in all treatments; only 6PGDH was present in the organellar fraction.The enzyme activities monitored in seeds at 20° C remained relatively constant over the course of the investigation except in the case of cytosolic 6PGDH where it is suggested an inhibitor of the enzyme accumulated. This inhibitor was removed by the partial purification procedure. Increases in the activities of the enzymes occurred during stratification, the major increase coinciding exactly with dormancy breakage but prior to the initiation of germination. The marked increase in G6PDH and 6PGDH concurrent with the change in germination potential of the chilled seed may have considerable biochemical significance in breaking down the dormant state.Abbreviations G6P glucose-6-phosphate - G6PDH glucose-6 phosphate dehydrogenase - NADP nicotinamide adenine dinucleotide phosphate - 6 PGDH 6-phosphogluconic acid dehydrogenase - PPP pentose phosphate pathway  相似文献   

12.
The stereospecificity of the reaction catalysed by the spinach chloroplast enzyme NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NADP+ oxidoreductase (phosphorylating), EC 1.2.1.13) with respect to the C4 nicotinamide hydrogen transfer was investigated. NADPH deuterated at the C4 HA position was synthesized using aldehyde dehydrogenase. 1H-NMR spectroscopy was used to examine the NADP+ product of the GPDH reaction for the presence or absence of the C4 deuterium atom. Chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase retains the deuterium at the C4 HA position (removing the hydrogen atom), and is therefore a B (pro-S) specific dehydrogenase.  相似文献   

13.
NADP(+)-specific glutamate dehydrogenase of Salmonella typhimurium was previously shown to react irreversibly at the coenzyme site with the nucleotide analogue 2-((4-bromo-2,3-dioxobutyl)thio)-1,N6-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A 2',5'-DP) yielding a partially active enzyme, and inactivation was attributed to modification of the peptide Leu282-Cys-Glu-Ile-Lys286 (Bansal, A., Dayton, M.A., Zalkin, H., and Colman, R.F. (1989) J. Biol. Chem. 264, 9827-9835). Three mutant enzymes have now been engineered, expressed in Escherichia coli, and purified: the single mutants C283I and E284Q and the double mutant C283I:E284Q. The wild-type and mutant enzymes have similar specific activities and Km values for alpha-ketoglutarate, ammonium ion, and NADPH, indicating that neither cysteine 283 nor glutamic acid 284 is essential for activity. The mutant enzyme E284Q, like wild-type glutamate dehydrogenase, is substantially inactivated by 2-BDB-T epsilon A 2',5'-DP. In contrast, the two cysteine mutant enzymes, C283I and C283I:E284Q, are not inactivated by 2-BDB-T epsilon A 2',5'-DP. Modified tryptic peptides with the sequence Leu-X-Glu(Gln)-Ile-Lys were isolated from wild-type or E284Q enzymes inactivated by 2-BDB-T epsilon A 2',5'-DP. This peptide was absent from digests of active wild-type enzyme modified in the presence of the protectant NADPH and from digests of active C283I enzyme after incubation with 2-BDB-T epsilon A 2',5'-DP. Although it is not required for catalytic activity, cysteine 283 is implicated by the results of the affinity labeling experiments as the reaction target of the nucleotide analogue and is located in the region of the coenzyme binding site.  相似文献   

14.
The ferredoxin nicotinamide adenine dinucleotide phosphate reductase from Pseudomonas aeruginosa ( pa-FPR) in complex with NADP (+) has been characterized by X-ray crystallography and in solution by NMR spectroscopy. The structure of the complex revealed that pa-FPR harbors a preformed NADP (+) binding pocket where the cofactor binds with minimal structural perturbation of the enzyme. These findings were complemented by obtaining sequential backbone resonance assignments of this 29518 kDa enzyme, which enabled the study of the pa-FPR-NADP complex by monitoring chemical shift perturbations induced by addition of NADP (+) or the inhibitor adenine dinucleotide phosphate (ADP) to pa-FPR. The results are consistent with a preformed NADP (+) binding site and also demonstrate that the pa-FPR-NADP complex is largely stabilized by interactions between the protein and the 2'-P AMP portion of the cofactor. Analysis of the crystal structure also shows a vast network of interactions between the two cofactors, FAD and NADP (+), and the characteristic AFVEK (258) C'-terminal extension that is typical of bacterial FPRs but is absent in their plastidic ferredoxin NADP (+) reductase (FNR) counterparts. The conformations of NADP (+) and FAD in pa-FPR place their respective nicotinamide and isoalloxazine rings 15 A apart and separated by residues in the C'-terminal extension. The network of interactions among NADP (+), FAD, and residues in the C'-terminal extension indicate that the gross conformational rearrangement that would be necessary to place the nicotinamide and isoalloxazine rings parallel and adjacent to one another for direct hydride transfer between NADPH and FAD in pa-FPR is highly unlikely. This conclusion is supported by observations made in the NMR spectra of pa-FPR and the pa-FPR-NADP complex, which strongly suggest that residues in the C'-terminal sequence do not undergo conformational exchange in the presence or absence of NADP (+). These findings are discussed in the context of a possible stepwise electron-proton-electron transfer of hydride in the oxidation of NADPH by FPR enzymes.  相似文献   

15.
The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.  相似文献   

16.
6-Phosphogluconate dehydrogenase (6PGDH) from rat-liver and kidney-cortex cytosol has been partially purified and almost completely isolated (more than 95%) from glucose-6-phosphate dehydrogenase activity. The purification and isolation procedures included high-speed centrifugation, 60–75% ammonium-sulphate fractionation, by which both hexose-monophosphate dehydrogenases activities were separated, and finally the protein fraction was applied to a chromatographic column of Sephadex G-25 equilibrated with 10 mM Tris-EDTA-NADP buffer, pH 7.6, to eliminate any contaminating metabolites. The kinetic properties of the isolated partially purified liver and renal 6PGDH were examined. The saturation curves of this enzyme in both rat tissues showed a typical Michaelis-Menten kinetic, with no evidence of co-operativity. The optimum pH for both liver and kidney-cortex 6PGDH was 8.0. The Km values of liver 6PGDH for 6-phosphogluconate (6PG) and for NADP were 157 M and 258 M respectively, while the specific activity measured at optimum conditions (pH 8.0 and 37°C) was 424.2 mU/mg of protein. NADPH caused a competitive inhibition against NADP with an inhibition constant (Ki) of 21 M. The Km values for 6PG and NADP from kidney-cortex 6PGDH were 49 M and 56 M respectively. The specific activity at pH 8.0 and 37°C was 120.7 mU/mg of protein. NADPH also competitively inhibited 6PGDH activity, with a Ki of 41 M. This paper describes a quick, easy and reliable method for the separation of the two dehydrogenases present in the oxidative segment of the pentose-phosphate pathway in animal tissues, eliminating interference in the measurements of their activities.Publication No 170 from Drugs, Environmental Toxics and Cell Metabolism research group. Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain  相似文献   

17.
M F Carlier  D Pantaloni 《Biochemistry》1976,15(21):4703-4712
The binding of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide phosphate (NADP) dependent isocitrate dehydrogenase from beef liver cytoplasm was studied by several equilibrium techniques (ultracentrifugation, molecular sieving, ultrafiltration, fluorescence). Two binding sites (per dimeric enzyme molecule) were found with slightly different dissociation constants (0.5 and 0.12 muM) and fluorescence yields (7.7 and 6.3). A ternary complex was formed between enzyme, isocitrate, and NADPH, in which NADPH dissociation constant was 5 muM. On the contrary, no binding of NADPH to the enzyme took place in the presence of magnesium isocitrate. Dialysis experiments showed the existence of 1 NADP binding site/dimer, with a dissociation constant of 26 muM. When NADPH was present with the enzyme in the proportion of 1 molecule/dimer, the dissociation constant of NADP was decreased fourfold, reaching a value quantitatively comparable to the Michaelis constant. The kinetics of coenzyme binding was followed using the stopped-flow technique with fluorescence detection. NADPH binding to the enzyme occurred through one fast reaction (k1 = 20 muM-1 s-1). Dissociation of NADPH took place upon NADP binding; however, equilibrium as well as kinetic data were incompatible with a simple competition scheme. Dissociation of NADPH from the enzyme upon magnesium isocitrate binding was preceded by the formation of a transitory ternary complex in which the fluorescence of NADPH was only about 30% of that in the enzyme-NADPH complex. Then interaction between the conenzymes and the involvement of ternary complexes in the catalytic mechanism are discussed in relation with what is known about the regulatory role of the coenzyme (Carlier, M. F., and Pantaloni, D. (1976), Biochemistry, 15, 1761-1766).  相似文献   

18.
We have previously shown that Mycobacterium tuberculosis FprA, an NADPH-ferredoxin reductase homologous to mammalian adrenodoxin reductase, promotes the oxidation of NADP(+) to its 4-oxo derivative 3-carboxamide-4-pyridone adenine dinucleotide phosphate [Bossi RT, Aliverti A, Raimondi D, Fischer F, Zanetti G, Ferrari D, Tahallah N, Maier CS, Heck AJ, Rizzi M et al. (2002) Biochemistry41, 8807-8818]. Here, we provide a detailed study of this unusual enzyme reaction, showing that it occurs at a very slow rate (0.14 h(-1)), requires the participation of the enzyme-bound FAD, and is regiospecific in affecting only the C4 of the NADP nicotinamide ring. By protein engineering, we excluded the involvement in catalysis of residues Glu214 and His57, previously suggested to be implicated on the basis of their localization in the three-dimensional structure of the enzyme. Our results substantiate a catalytic mechanism for 3-carboxamide-4-pyridone adenine dinucleotide phosphate formation in which the initial and rate-determining step is the nucleophilic attack of the nicotinamide moiety by an active site water molecule. Whereas plant-type ferredoxin reductases were unable to oxidize NADP(+), the mammalian adrenodoxin reductase also catalyzed this unusual reaction. Thus, the 3-carboxamide-4-pyridone adenine dinucleotide phosphate formation reaction seems to be a peculiar feature of the mitochondrial type of ferredoxin reductases, possibly reflecting conserved properties of their active sites. Furthermore, we showed that 3-carboxamide-4-pyridone adenine dinucleotide phosphate is good ligand and a competitive inhibitor of various dehydrogenases, making this nucleotide analog a useful tool for the characterization of the cosubstrate-binding site of NADPH-dependent enzymes.  相似文献   

19.
Summary Previous studies examining the regulation of the synthesis of G6PDH and 6PGDH in rat liver and adipose tissue have focused on the induction of these enzymes by different diets and some hormones. In rat liver these enzymatic activities seem to be regulated by a mechanism involving changes in the NADPH requirements. In this paper we have studied the effect of changes in the flux through different NADPH-consuming pathways on G6PDH and 6PGDH levels in adipose tissue and on the NADPH/NADP ratio. The results show that: I) an increase in the consumption of NADPH, caused by the activation of either fatty acid synthesis or detoxification systems which consume NADPH, is paralleled by an increase in the levels of these enzymes; II) when the increase in consumption of NADPH is prevented, the G6PDH and 6PGDH levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - GR Glutathione Reductase - ME Malic Enzyme - tBHP t-Butyl Hydroperoxide - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide  相似文献   

20.
The glucose-6-phosphate (Glc6P) and 6-phosphogluconate (6PG) dehydrogenases of the amino-acid-producing bacterium Corynebacterium glutamicum were purified to homogeneity and kinetically characterized. The Glc6P dehydrogenase was a heteromultimeric complex, which consists of Zwf and OpcA subunits. The product inhibition pattern of the Glc6P dehydrogenase was consistent with an ordered bi-bi mechanism. The 6PG dehydrogenase was found to operate according to a Theorell-Chance ordered bi-ter mechanism. Both enzymes were inhibited by NADPH and the 6PG dehydrogenase additionally by ATP, fructose 1,6-bisphosphate (Fru1,6P2), D-glyceraldehyde 3-phosphate (Gra3P), erythrose 4-phosphate and ribulose 5-phosphate (Rib5P). The inhibition by NADPH was considered to be most important, with inhibition constants of around 25 microM for both enzymes. Intracellular metabolite concentrations were determined in two isogenic strains of C. glutamicum with plasmid-encoded NAD- and NADP-dependent glutamate dehydrogenases. NADP+ and NADPH levels were between 130 microM and 290 microM, which is very much higher than the respective Km and Ki values. The Glc6P concentration was around 500 microM in both strains. The in vivo fluxes through the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified enzymes determined in vitro were in agreement with the same fluxes determined by NMR after 13C-labelling. From the derived kinetic model thus validated, it is concluded that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH and NADP+ concentrations and the specific enzyme activities of both dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号