首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Juvenile hormone esterase (JHE) from the serum of the cricket, Gryllus assimilis, was purified to homogeneity in a four-step procedure involving polyethylene glycol precipitation, hydrophobic interaction FPLC, and ion exchange FPLC. This procedure could be completed in 4 days and resulted in a greater than 900-fold purification with greater than 30% recovery. The purified enzyme exhibited a single band on a silver-stained SDS PAGE gel and had an apparent subunit molecular mass of 52 kDa. The native subunit molecular mass, determined by gel permeation FPLC, was 98 kDa, indicating that JHE from Gryllus assimilis is a dimer of two identical or similar subunits. The turnover number of the purified enzyme (1.41 s(-1)), K(M(JH-III)) (84 +/- 12 nM) of nearly-purified enzyme, and k(cat)/K(M) (1.67 x 10(7) s(-1) M(-1)) were similar to values reported for other well-established lepidopteran and dipteran JHEs. JHE from Gryllus assimilis was strongly inhibited by the JHE transition-state analogue OTFP (octylthio-1,1,1-trifluoro-2-propanone; I(50) = 10(-7) M) and by DFP (diisopropyl fluorophosphate; I(50) = 10(-7) M). The shapes of the inhibition profiles suggest the existence of multiple binding sites for these inhibitors or multiple JHEs that differ in inhibition. Isoelectric focusing separated the purified protein into 4 isoforms with pIs ranging from 4.7-4.9. N-terminal amino acid sequences (11-20 amino acids) of the isoforms differed from each other in 1-4 positions, suggesting that the isoforms are products of the same or similar genes. Homogeneously purified JHE hydrolyzed alpha-napthyl esters, did not exhibit any detectable acetylcholinesterase, acid phosphatase, or aminopeptidase activity, and exhibited only very weak alkaline phosphatase activity. JHE exhibited a low (11 microM) K(M) for long-chain alpha-naphthyl esters, indicating that JHE may have physiological roles other than the hydrolysis of JH-III. Purification of JHE represents a key step in our attempts to identify the molecular causes of genetically-based variation in JHE activity in G. assimilis. This represents the first homogeneous purification of JHE from a hemimetabolous insect.  相似文献   

2.
Wysocki P  Strzezek J 《Theriogenology》2003,59(3-4):1011-1025
A protein tyrosine phosphatase (PTPase) with acid phosphatase activity was purified (500-fold) from the fluid of boar seminal vesicles. Preparative purification was performed with a 3-step procedure, employing FPLC S-Sepharose Fast Flow, Mono Q and Superdex 75 column. Protein tyrosine acid phosphatase (PTAPase) was homogeneous by polyacrylamide gel electrophoresis (PAGE, SDS-PAGE). PTAPase is a glycoprotein which has a molecular weight of about 41-42 kDa. This enzyme was maximally active at pH 5.5, and its thermostability was less than 80 degrees C. The K(m) value for p-nitrophenylphosphate, a specific synthetic substrate, was 0.87 x 10(-3)M, however, higher substrate specificity was shown when phosphotyrosine (K(m)=0.37 x 10(-3)M) and protein fragments, such as gastrin (K(m)=0.0032 x 10(-3)M) and hirudin (K(m)=0.0075 x 10(-3)M), were used as substrates. Activity of PTAPase was inhibited by dephostatin, molybdate and orthovanadate by 100, 95 and 70%, respectively, when phosphotyrosine was used as the substrate. Immunofluorescence study has shown that the seminal vesicles are the only source of PTAPase in boar seminal plasma.  相似文献   

3.
Extracellular secretion of lignin peroxidase from Pycnoporus sanguineus MTCC-137 in the liquid culture growth medium amended with lignin containing natural sources has been shown. The maximum secretion of lignin peroxidase has been found in the presence of saw dust. The enzyme has been purified to homogeneity from the culture filtrate of the fungus using ultrafiltration and anion exchange chromatography on DEAE-cellulose. The purified lignin peroxidase gave a single protein band in sodium dodecylsulphate polyacrylamide gel electrophoresis corresponding to the molecular mass 40 kDa. The K(m)(, kcat) and k(cat)/K(m) values of the enzyme using veratryl alcohol and H2O2 as the substrate were 61 microM, 2.13 s(-1), 3.5 x 10(4) M(-1) s(-1) and 71 microM, 2.13 s(-1), 3.0 x 10(4) M(-1) s(-1) respectively at the optimum pH of 2.5. The temperature optimum of the enzyme was 25 degrees C.  相似文献   

4.
Urease has been purified from the dehusked seeds of pigeonpea (Cajanus cajan L.) to apparent electrophoretic homogeneity with approximately 200 fold purification, with a specific activity of 6.24 x10(3) U mg(-1) protein. The enzyme was purified by the sequence of steps, namely, first acetone fractionation, acid step, a second acetone fractionation followed by gel filtration and anion-exchange chromatographies. Single band was observed in both native- and SDS-PAGE. The molecular mass estimated for the native enzyme was 540 kDa whereas subunit values of 90 kDa were determined. Hence, urease is a hexamer of identical subunits. Nickel was observed in the purified enzyme from atomic absorption spectroscopy with approximately 2 nickel ions per enzyme subunit. Both jack bean and soybean ureases are serologically related to pigeonpea urease. The amino acid composition of pigeonpea urease shows high acidic amino acid content. The N-terminal sequence of pigeonpea urease, determined up to the 20th residue, was homologous to that of jack bean and soybean seed ureases. The optimum pH was 7.3 in the pH range 5.0-8.5. Pigeonpea urease shows K(m) for urea of 3.0+/-0.2 mM in 0.05 M Tris-acetate buffer, pH 7.3, at 37 degrees C. The turnover number, k(cat), was observed to be 6.2 x 10(4) s(-1) and k(cat)/K(m) was 2.1 x 10(7) M(-1) s(-1). Pigeonpea urease shows high specificity for its primary substrate urea.  相似文献   

5.
Galactosylceramide sulfotransferase (EC 2.8.2.11) catalyzes the biosynthesis of sulfatide from galactocerebroside and adenosine 3'-phosphate 5'-phosphosulfate (PAPS). This enzyme is developmentally controlled, reaching a maximum activity in the brains of mice corresponding to that of maximum myelination. The product, sulfatide, is an important component of myelin. This transferase from mouse brain has been purified 2600-fold using a combination of pyridoxal 5'-phosphate- and ATP-ligated columns. The purified enzyme yielded a single band following SDS-polyacrylamide gel electrophoresis with an apparent M(r) of 31,000. The entire purification procedure can be completed in 1 day. The pH optimum for the enzyme is 7.0. The Km for PAPS is 1.2 x 10(-6) M, and the Km for cerebroside is 2.6 x 10(-5) M. Cerebroside concentrations > 80 pmol/ml are inhibitory. Enzyme preparations were associated with several lipids. Vitamin K+P(i) activated purified preparations of the sulfotransferase and maintained enzyme activity during storage at -80 degrees C.  相似文献   

6.
A membrane-bound phosphatidylinositol (PtdIns) kinase has been purified approximately 9500-fold to apparent homogeneity from sheep brains. The purification procedure involves: solubilisation of the membrane fraction with Triton X-100, ammonium sulphate fractionation and a number of ion-exchange and gel-filtration chromatography steps. The purified enzyme exhibited a final specific activity of 1149 nmol.min-1.mg-1. The molecular mass of the enzyme was estimated to be 55 kDa by SDS/PAGE and 150 +/- 10 kDa by HPLC gel filtration in the presence of Triton X-100. Kinetic measurements have shown that the apparent Km value of PtdIns kinase for the utilisation of PtdIns is 22 microM and for ATP 67 microM. Mg2+ was the most effective divalent cation activator of PtdIns kinase, with maximal enzymatic activity reached at a concentration of 10 mM Mg2+. In addition to adenosine and ADP, the 2'(3')-O-(2,4,6-trinitrophenyl) derivative of ATP was found to be a strong competitive inhibitor of the enzyme, with a Ki of 32 microM. Enzymatic activity was found to be stimulated by Triton X-100 but inhibited by deoxycholate.  相似文献   

7.
Protein methylase II (AdoMet:protein-carboxyl O-methyltransferase, EC 2.1.1.24) was identified and purified 115-fold from Helicobacter pylori through Q-Sepharose ion exchange column, AdoHcy-Sepharose 4B column, and Superdex 200 HR column chromatography using FPLC. The purified preparation showed two protein bands of about 78 kDa and 29 kDa molecular mass on SDS-PAGE. On non-denaturing gel electrophoresis, the enzyme migrated as a single band with a molecular mass of 410 kDa. In addition, MALDI-TOF-MS analysis and Superdex 200 HR column chromatography of the purified enzyme showed a major mass signal with molecular mass values of 425 kDa and 430 kDa, respectively. Therefore, the above results led us to suggest that protein methylase II purified from H. pylori is composed of four heterodimers with 425 kDa (4x(78+29)=428 kDa). This magnitude of molecular mass is unusual for protein methylases II so far reported. The enzyme has an optimal pH of 6.0, a K(m) value of 5.0x10(-6) M for S-adenosyl-L-methionine and a V(max) of 205 pmol methyl-(14)C transferred min(-1) mg(-1) protein.  相似文献   

8.
In the present study, carbonic anhydrase (CA) enzyme was purified from rainbow trout (RT) liver with a specific activity of 4318 EUxmg(-1) and a yield of 38% using Sepharose-4B-L tyrosine-sulfanilamide affinity gel chromatography. The overall purification was approximately 2260-fold. To check the purity and determine subunit molecular weight of enzyme, SDS-polyacrylamide gel electrophoresis was performed, which showed a single band and MW of approx. 29.4 kDa. The molecular weight of native enzyme was estimated to be approx. 31 kDa by Sephadex-G 200 gel filtration chromatography. Optimum and stable pH were determined as 9.0 in 1 M Tris-SO(4) buffer and 8.5 in 1 M Tris-SO(4) buffer at 4 degrees C, respectively. The optimum temperature, activation energy (E(a)), activation enthalpy ((DeltaH) and Q(10) from Arrhenius plot for the RT liver CA were 40 degrees C, 2.88 kcal/mol, 2.288 kcal/mol and 1.53, respectively. The purified enzyme had an apparent K(m) and V(max) of 0.66 mM and 0.126 micromol x min(-1) for 4-nitrophenylacetate, respectively. K(cat) of the CA was found to be 32.8 s(-1). The inhibitory effects of low concentrations of different metals (Co(II), Cu(II), Zn(II) and Ag(I)) on CA activity were determined using the esterase method under in vitro conditions. The obtained IC(50) values, 50% inhibition of in vitro enzyme activity, were 0.03 mM for cobalt, 30 mM for copper, 47.1 mM for zinc and 0.01 mM for silver. K(i) values for these substances were also calculated from Linewaever-Burk plots as 0.050 mM for cobalt, 1.950 mM for copper, 7.035 mM for zinc and 2.190 mM for silver respectively and determined that cobalt and zinc inhibit the enzyme a competitive manner and copper and silver inhibit the enzyme in an uncompetitive manner.  相似文献   

9.
The nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase in Clostridium thermoaceticum used, in addition to its natural electron acceptor, methyl and benzyl viologen. The enzyme was purified to a specific activity of 34 (micromoles per minute per milligram of protein) with NADP as electron acceptor. Disc gel electrophoresis of the purified enzyme yielded two major and two minor protein bands, and during centrifugation in sucrose gradients two components of apparent molecular weights of 270,000 and 320,000 were obtained, both having formate dehydrogenase activity. The enzyme preparation catalyzed the reduction of riboflavine 5'-phosphate flavine adenine dinucleotide and methyl viologen by using reduced NADP as a source of electrons. It also had reduced NADP oxidase activity. The enzyme was strongly inhibited by cyanide and ethylenediaminetetraacetic acid. It was also inhibited by hypophosphite, an inhibition that was reversed by formate. Sulfite inhibited the activity with NADP but not with methyl viologen as acceptor. The apparent K(m) at 55 C and pH 7.5 for formate was 2.27 x 10(-4) M with NADP and 0.83 x 10(-4) with methyl viologen as acceptor. The apparent K(m) for NADP was 1.09 x 10(-4) M and for methyl viologen was 2.35 x 10(-3) M. NADP showed substrate inhibition at 5 x 10(-3) M and higher concentrations. With NADP as electron acceptor, the enzyme had a broad pH optimum between 7 and 9.5. The apparent temperature optimum was 85 C. In the absence of substrates, the enzyme was stable at 70 C but was rapidly inactivated at temperatures above 73 C. The enzyme was very sensitive to oxygen but was stabilized by thiol-iron complexes and formate.  相似文献   

10.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2, 6-dimethoxyphenol (Km = 2.6 x 10(-5) +/- 7 x 10(-6) M), catechol (Km = 2.5 x 10(-4) +/- 1 x 10(-5) M), pyrogallol (Km = 3.1 x 10(-4) +/- 4 x 10(-5) M), and guaiacol (Km = 5.1 x 10(-4) +/- 2 x 10(-5) M). In addition, the laccase catalyzed the polymerization of 1, 8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen's hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

11.
Adenosine phosphorylase, a purine nucleoside phosphorylase endowed with high specificity for adenine nucleosides, was purified 117-fold from vegetative forms of Bacillus cereus. The purification procedure included ammonium sulphate fractionation, pH 4 treatment, ion exchange chromatography on DEAE-Sephacel, gel filtration on Sephacryl S-300 HR and affinity chromatography on N(6)-adenosyl agarose. The enzyme shows a good stability to both temperature and pH. It appears to be a homohexamer of 164+/-5 kDa. Kinetic characterization confirmed the specificity of this phosphorylase for 6-aminopurine nucleosides. Adenosine was the preferred substrate for nucleoside phosphorolysis (k(cat)/K(m) 2.1x10(6) s(-1) M(-1)), followed by 2'-deoxyadenosine (k(cat)/K(m) 4.2x10(5) s(-1) M(-1)). Apparently, the low specificity of adenosine phosphorylase towards 6-oxopurine nucleosides is due to a slow catalytic rate rather than to poor substrate binding.  相似文献   

12.
The cholesterol sulphate sulphohydrolase (CHS-ase) exhibiting molecular weight of 30 kDa was purified from human placenta microsomes. The microsomal proteins were extracted with 0.5% Triton X-100. The DEAE-cellulose chromatography of the solubilized microsomal proteins, performed at pH 7.6 allowed to separate two enzymatically active fractions. One of them was associated with the protein fraction unbound by DEAE-cellulose, the other was tightly bound by ion exchanger. The 30 kDa cholesterol sulphate sulphohydrolase was purified to homogenity from the protein fraction tightly bound by DEAE-cellulose. The highly purified enzyme preparation (specific activity 385 nmol min(-1)mg(-1) of protein) exhibited optimal activity at pH 6.4, the K(m) was established to be 6.7 x 10(-6)M, the pI value was 7.4. The 30 kDa cholesterol sulphate sulphohydrolase, in contrast to the CHS-ase form originated from the protein fraction unbound by DEAE-cellulose, was not sensitive to alkaline phosphatase treatment and phosphohydrolase inhibitors. The effects of steroids, -SH reacting agents and sulphohydrolase inhibitors on the enzyme activity were tested.  相似文献   

13.
1. Zn2+-dependent acid p-nitrophenylphosphatase from chicken liver was purified to homogeneity. 2. The purified enzyme moves as a single electrophoretic band at pH 8.3 in 7.5% acrylamide and was coincident with the enzyme activity. 3. Gel filtration on Sephadex G-200 gave an apparent molecular weight of 110,000 with two apparent identical subunits of 54,000-56,000 as determined by sodium dodecyl sulphate gel electrophoresis. 4. The maximum of enzyme activity was obtained in the presence of 3-5 mM ZnCl2 at pH 6-6.2, however, higher concentrations of metal are inhibitory. The enzyme hydrolyses p-nitrophenylphosphate, o-carboxyphenylphosphate and phenylphosphate, was insensitive to NaF and was inhibited by phosphate and ATP. The Km for p-nitrophenylphosphate was 0.28 x 10(-3)M at pH 6 in 50 mM sodium acetate/100 mM NaCl. 5. Phosphate is a competitive inhibitor (Ki = 0.5 x 10(-3)M) whereas ATP seems to be a non-competitive inhibitor (Ki = 0.35 x 10(-3)M). The isoelectric point determined by isoelectric focusing on polyacrylamide gel is 7.5. 6. Cell fractionation studies indicate that the Zn2+-dependent acid p-nitrophenylphosphatase of chicken liver is a soluble enzyme form.  相似文献   

14.
Purification and characterization of the sea urchin embryo hatching enzyme   总被引:11,自引:0,他引:11  
The sea urchin hatching enzyme provides an interesting model for the control of gene expression during early development. In order to study its properties and developmental regulation, the hatching enzyme of the species Paracentrotus lividus has been purified. The fertilization envelopes of the embryos were digested before hatching by a crude culture supernatant previously made. The enzyme was then solubilized by 1 M NaCl and 0.5% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and purified by hydrophobic chromatography on Procion-agarose. A 470-fold increase in specific activity was obtained. The kinetic parameters of the proteolytic activity using dimethylcasein as substrate are: Km = 120 micrograms x ml-1, Vm = 200 mumol x min-1 x mg-1, and kcat = 180 s-1 at 500 mM NaCl, 10 mM CaCl2, pH 8.0, at 35 degrees C. The purified enzyme is highly active on fertilization envelopes: at 20 degrees C and 500 mM NaCl, 10 mM CaCl2, pH 8.0, 100 ng of enzyme completely denudes embryos in about 20 min under standard conditions. The molecular mass of the enzyme was estimated as 57 kDa by gel filtration, 51 kDa by gel electrophoresis, and 52 kDa by amino acid analysis. The hatching enzyme was shown to be a glycoprotein which autolyzes to a 30-kDa inactive form. Antibodies raised against the 51- or 30-kDa forms reacted with both these forms. Immunoblotting experiments showed that the hatching supernatants contain important amounts of the autolyzed species.  相似文献   

15.
A phosphatase specific for the hydrolysis of 3-deoxy-d-manno-octulosonate (KDO)-8-phosphate was purified approximately 400-fold from crude extracts of Escherichia coli B. The hydrolysis of KDO-8-phosphate to KDO and inorganic phosphate in crude extracts of E. coli B, grown in phosphate-containing minimal medium, could be accounted for by the enzymatic activity of this specific phosphatase. No other sugar phosphate tested was an alternate substrate or inhibitor of the purified enzyme. KDO-8-phosphate phosphatase was stimulated three- to fourfold by the addition of 1.0 mM Co(+) or Mg(2+) and to a lesser extent by 1.0 mM Ba(2+), Zn(2+), and Mn(2+). The activity was inhibited by the addition of 1.0 mM ethylenediaminetetraacetic acid, Cu(2+), Ca(2+), Cd(2+), Hg(2+), and chloride ions (50% at 0.1 M). The pH optimum was determined to be 5.5 to 6.5 in both tris(hydroxymethyl)aminomethane-acetate and HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer. This specific phosphatase had an isoelectric point of 4.7 to 4.8 and a molecular weight of 80,000 +/- 6,000 as determined by molecular sieving and Ferguson analysis. The enzyme appeared to be composed of two identical subunits of 40,000 to 43,000 molecular weight. The apparent K(m) for KDO-8-phosphate was determined to be 5.8 +/- 0.9 x 10(-5) M in the presence of 1.0 mM Co(2+), 9.1 +/- 1 x 10(-5) M in the presence of 1.0 mM Mg(2+), and 1.0 +/- 0.2 x 10(-4) M in the absence of added Co(2+) or Mg(2+).  相似文献   

16.
Two phospholipase enzymes NN1 and NN2 were purified from the venom of Naja nigricolis nigricolis Reinhardt to apparent homogeneity. NN1 was purified by a two-step anion-exchange chromatography on DEAE-cellulose column while NN2 was purified by a combination of anion-exchange chromatography and gel filtration on Sephadex G-150. The enzyme NN1 moved homogenously on acrylamide gel as a monomer with a molecular weight of 65 kDa while NN2 was a dimer of 71 kDa. Both enzymes were clearly separated. Both enzymes hydrolyzed L-alpha-phosphatidyl choline with activities of 345.5 for NN1 and 727.8 micromol min(-1) x mg(-1) for NN2. The dimeric 71-kDa enzyme has a higher haemolytic and anticoagulant activity than the monomeric 65-kDa enzyme. It is apparent that the dimeric enzyme has a more pronounced activity than the monomer has, thus toxic activity may be related to the hydrolysis of phospholipids.  相似文献   

17.
Wysocki P  Strzezek J 《Theriogenology》2006,66(9):2152-2159
The fluid of boar epididymis is characterized by a high activity of acid phosphatase (AcP), which occurs in three molecular forms. An efficient procedure was developed for the purification of a molecular form of epididymal acid phosphatase from boar seminal plasma. We focused on the epididymal molecular form, which displayed the highest electrophoretic mobility. The purification procedure (dialysis, ion exchange chromatography, affinity chromatography and hydroxyapatite chromatography) used in this study gave more than 7000-fold purification of the enzyme with a yield of 50%. The purified enzyme was homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified molecular form of the enzyme is a thermostable 50kDa glycoprotein, with a pI value of 7.1 and was highly resistant to inhibitors of acid phosphatase when p-nitrophenyl phosphate was used as the substrate. Hydrolysis of p-nitrophenyl phosphate by the purified enzyme was maximally active at pH of 4.3; however, high catalytic activity of the enzyme was within the pH range of 3.5-7.0. Kinetic analysis revealed that the purified enzyme exhibited affinity for phosphotyrosine (K(m)=2.1x10(-3)M) and was inhibited, to some extent, by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor. The N-terminal amino acid sequence of boar epididymal acid phosphatase is ELRFVTLVFR, which showed 90% homology with the sequence of human, mouse or rat prostatic acid phosphatase. The purification procedure described allows the identification of the specific biochemical properties of a molecular form of epididymal acid phosphatase, which plays an important role in the boar epididymis.  相似文献   

18.
Liu D  Zhu T  Fan L  Quan J  Guo H  Ni J 《Biotechnology letters》2007,29(10):1529-1535
A 1,125-bp long ORF encoding a novel gentisate 1,2-dioxygenase with two-domain bicupins was cloned from Silicibacter pomeroyi DSS-3 and expressed in Escherichia coli. The resulting product was purified to homogeneity and partially characterized. Non-reductive SDS-PAGE and gel filtration showed that the active recombinant gentisate 1,2-dioxygenase had an estimated molecular mass of 132 kDa, and reductive SDS-PAGE indicated an approximate size of 45 kDa. The enzyme thus appears to be a homotrimeric protein. This is in contrast to the homotetrameric or dimeric protein of the gentisate 1,2-dioxygenases that have been characterized thus far. The K (m) and K (cat)/K (m) for gentisate were 12 muM and 653 x 10(4) M(-1 )s(-1); the pI was 4.6-4.8. It was optimally active at 40 degrees C and pH 8.0.  相似文献   

19.
A novel peroxidase that catalyses the transformation of caffeic acid and ferulic acid via oxidative coupling was purified from callus cultures of Bupleurum salicifolium petioles. The enzyme, which was purified over 2,900-fold, is a glycoprotein with a molecular weight of 38,000, determined by SDS/PAGE and gel filtration. The K(m) values obtained were 2.4x10(-4) M for caffeic and 2.6x10(-4) M for ferulic acid, while the K(m) values for H2O2 with caffeic acid was 4x10(-5) M and for H2O2 with ferulic acid was 4.8x10(-4) M. The purified peroxidase exhibits lower activity with typical peroxidase substrates (guaiacol and pyrogallol) than it does with caffeic and ferulic acids, but does not exhibit any activity with other phenylpropanoids tested (cinnamic acid, coumaric acid, and 3,4-dimethoxycinnamic acid).  相似文献   

20.
A lectin recognizing both Galbeta1-3GlcNAc and Galbeta1-4GlcNAc was purified from the demosponge Halichondria okadai by lactosyl-agarose affinity chromatography. The molecular mass of the lectin was determined to be 30 kDa by SDS-PAGE under reducing and non-reducing conditions and 60 kDa by gel permeation chromatography. The pI value of the lectin was 6.7. It was found to agglutinate trypsinized and glutaraldehyde-fixed rabbit and human erythrocytes in the presence and absence of divalent cations. The hemagglutinating activity by the lectin was inhibited by d-galactose, methyl-d-galactopyranoside, N-acetyl-d-galactosamine, methyl-N-acetyl-d-galactosaminide, lactose, melibiose, and asialofetuin. The K(d) of the lectin against p-nitrophenyl-beta-lactoside was determined to be 2.76x10(-5) M and its glycan-binding profile given by frontal affinity chromatography was shown to be similar to many other known galectins. Partial primary structure analysis of 7 peptides by cleavage with lysyl endopeptidase indicated that one of the peptides showed significant similarity with galectin purified from the sponge Geodia cydonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号