首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six glycopeptide fractions namely GP-C1, GP-C2. GP-C3a.GP-C3b.GP-D, and GP-D2 were isolated after exhaustive digestion of glucoamylase II (Glucozyme) fromAspergillus niger with pronase. They were purified using gel-filtration. high-voltage paper electrophoresis and ion-exchange chromatography on Dowex-50 and Dowex-1. They appeared homogeneous on electrophoresis under different conditions of pHs. The molecular weights ranged from 1600 and 4000 for these glycopeptides. Ally of them contained serine at the N-terminal end. Serine and threonine were the major amino acids with glycine, alanine, proline and tryosine present as minor constituents. Carbohydrate analysis revealed the presence of different sugars. Based on this, the glycopeptides were grouped into three types: (1) GP-C1 and GP-C2 containing mannose, glucose and galactose; (2) GP-C3a, and GP-C3b,containing mannose glucose and glucosamine; and (3) GP-D1 and GP-D2, containing mannose. glucose, galactose and xylose. Most sugar constituents in each glycopeptide occured in non-integral ratios implying a microheterogeneity of the carbohydrate moiety inAspergillus niger glucoamylase.  相似文献   

2.
Glucoamylase and glucose oxidase fromAspergillus niger have been purified to homogeneity by chromatography on DEAE-cellulose and the purified enzymes have been used to investigate structural and antigenicity relationships. In structure, glucoamylase and glucose oxidase are glycoproteins containing 14% and 16% carbohydrate. Earlier methylation and reductive -elimination results have shown that glucoamylase has an unusual arrangement of carbohydrate residues, with 20 single mannose units and 25 di-, tri-, or tetrasaccharide chains of mannose, glucose, and galactose, all attached O-glycosidically to serine and threonine residues of the protein moiety. The antigenicity of the glucoamylase has now been found to reside predominantly in the types and arrangement of the carbohydrate chains. Glucose oxidase contains mannose, galactose, and glucosamine in the N-acetyl form in the native enzyme, but the complete structure of the carbohydrate chains has not yet been determined. The antigenicity of this enzyme does not reside in the carbohydrate units, but rather in the polypeptide chains of the two subunits of the enzyme. Glucose oxidase can be dissociated into subunits by mercaptoethanol and sodium dodecyl sulfate treatment, while glucoamylase cannot be dissociated, but undergoes only an unfolding of the polypeptide chain under these conditions. The subunits of glucose oxidase do not react with the anti-glucose oxidase antibodies, but the unfolded molecule and peptide fragments produced from glucoamylase by cyanogen bromide cleavage do react with antiglucoamylase antibodies.  相似文献   

3.
Some properties of the glucoamylase from Rhizopus niveus have been determined and compared with the comparable properties of the glucoamylase from Aspergillus niger. The enzymes from these organisms possess the following common properties: quantitative conversion of starch to glucose, molecular weights in the range 95,500 to 97,500, and glycoprotein structures with many oligosaccharide side chains attached to the protein moieties of the enzymes. Differences in the glucoamylases exist in electrophoretic mobility, amino acid composition, nature of carbohydrate units, and types of glycosidic linkages. Lysine, threonine, serine, glutamic acid, tyrosine, and phenylalanine differ in the two glucoamylases by 25 to 50%. Whereas the enzyme from R. niveus contains mannose and glucosamine, in the N-acetyl form, as the carbohydrate constituents, the enzyme from A. niger contains mannose, glucose, and galactose. The carbohydrate chains of the R. niveus enzyme are linked by O-glycosidic and N-glycosidic linkages to the protein, while those of the A. niger enzyme are linked by O-glycosidic linkages only. Antibodies directed against the two glucosamylases have been isolated by affinity chromatography and found to be specific for the carbohydrate units of the glucoamylases. Cross reactions did not occur between the glucoamylases and the purified antibodies.  相似文献   

4.
Based on morphological characteristics the taxa included in the Aspergillus aggregate can hardly be differentiated. For that reason the phylogeny of this genus was revised several times as different criteria, from morphological to later molecular, were used. We found, comparing nucleotide sequences of the ITS-region, that the strain Aspergillus niger (DSM 823) which is claimed to be identical to the strains ATCC 10577, IMI 027809, NCTC 7193 and NRRL 2322 can be molecularly classified as Aspergillus tubingensis, exhibiting 100% identity with the A. tubingensis CBS strains 643.92 and 127.49. We amplified, cloned and sequenced a new glucoamylase gene (glaA) from this strain of A. tubingensis (A. niger DSM 823) using primers derived from A. niger glucoamylase G1. The amplified cDNA fragment of 2013 bp contained an open reading frame encoding 648 amino acid residues. The calculated molecular mass of the glucoamylase, deduced from the amino acid sequence, was 68 kDa. The nucleotide sequence of glaA showed 99% similarity with glucoamylases from Aspergillus kawachii and Aspergillus shirousami, whereas the similarity with the glucoamylase G1 from A. niger was 92% An erratum to this article is available at .  相似文献   

5.
Two glucoamylases (I and II) were produced during solid-state culture of Aspergillus hennebergi (A. niger group) on cassava meal, whereas one glucoamylase and one alpha-amylase were synthesized by the mould in liquid culture. These glucoamylases were acidic proteins with thermotolerant activities. Glucoamylase I was not a glycoprotein, but glucoamylase II and the glucoamylase from liquid cultures contained 15% of sugars. The alpha-amylase was significantly less thermotolerant and of smaller molecular weight. The influence of culture conditions on the production of different amylases by the same Aspergillus strain on the same substrate is discussed.  相似文献   

6.

Background  

The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS.  相似文献   

7.
Carboxymethylcellulases (CMCases) fromAspergillus niger andCellulomonas biazotea were purified by a combination of ammonium sulfate precipitation, anion-exchange and gel-filtration chromatography with a 12- and 9-fold increase in the purification factor. The native and subunit molar mass of CMCase fromA. niger were 40 and 25–57 kDa, respectively, while those fromC. biazotea were 23 and 20–30 kDa, respectively. Low concentrations of Mn2+ activated the enzymes from both organisms (mixed activation) with apparent activation constants of 0.80 and 0.45 mmol/L of CMCases fromA. niger andC. biazotea, respectively, while at higher CMC concentrations Mn2+ inhibited the enzymes (mixed and partial uncompetitive inhibition). The reason for this complex behavior is that more than one Mn2+ bind to the same enzyme form with the apparent average inhibition constants of 2.7 and 1.3 mmol/L for CMCases fromA. niger andC. biazotea, respectively.  相似文献   

8.
Electrophoretically homogeneous type 1 (GP-C1 and GP-C2), type 2 (GP-C3a and GP-C3b,) and type 3 (GP-D1, and GP-D2) glycopeptides fromAspergillus niger glucoamylase II (Manjunath and Raghavendra Rao, preceding paper) were separately treated with alkaline borohydride. The (\-eliminated oligosaccharides were subjected to single and sequential digestion with specific glycosidases and the products analysed by gas liquid chromatography. The studies revealed that carbohydrate moieties were present as mannose, Man-Man-, and trisaccharide structures, namely, (a) GIc-Man-Man-, (b) Gal-Man-Man, (c) Man-Man-Man-, (d) GlcNAc-Man-Man-, and (e) Xyl-Man-Man. None of the glycopeptides contained all the trisaccharide structures (a) to (e). Type 1 glycopeptide contained structures (a), (b) and (c); type 2, (a) and (d) and type 3, (a), (b) and (e). The number of carbohydrate units (mono-, di-and trisaccharides) present in the major glycopeptides was determined and tentative structures for the glycopeptides proposed. Carbohydrate units appeared to occur in clusters of 4 to 7 in each glycopeptide, a structure unique to the carbohydrate moiety inAspergillus niger glucoamylase. Based on carbohydrate analysis and yields of glycopeptide, the number of units of each type of glycopeptide present in glucoamylase II was tentatively calculated to give two of type Man:Glc:Gal = 12–15:l:l, one of type Man:Glc:GlcN = 10-l1:1:2 and one of type Man :GIc :Gal:Xyl = 4–8:0.1:0.5-0.8:0.3-1 glycopeptides.  相似文献   

9.
Summary Aspergillus niger H-9 is a fungal strain isolated from a rotting cassava tuber in Thailand. In the present study, the production of the enzymes was carried out as solid state ricebran-soybean fermentation. Two types of glucoamylases were isolated and purified. The purified glucoamylases were found to be homogenous on 7.5% polyacrylamide gel disc electrophoresis. The molecular weights of glucoamylase I and II were 59,400–72,600 and 43,000–52,600 respectively. The Km values of glucoamylase I and glucoamylase II were 12.5 and 6.25 mg glucose/ml when soluble starch was used as substrate. The optimal pH of both enzymes was 4.0–5.0. The optimum temperatures for the activities of glucoamylase I and glucoamylase II were 60 and 70°C respectively. Both enzymes were stable in the pH range 3.0–6.0 and temperature stable below 50°C. Both glucoamylases were active on various kinds of starch and dextrin including raw starch. Glucoamylase II was, however, found to hydrolyse raw starch better than glucoamylase I.
Resumen Aspergillus niger H-9 es una cepa aislada en Tailandia a partir de tuberculos de cassava afectados de podredumbre. En este trabajo la producción de enzimas tuvo lugar mediante fermentación en un medio sólido compuesto por fibra de arroz y soja. Se aislaron y purificaron dos tipos de glucoamilasas. Al realizar una electroforesis en disco de polyacrilamida al 7.5% se observó que las glucoamilasa purificadas eran homogeneas. Los pesos de las glucoamilasas I y II eran respectivamente 59,400–72,600 y 43,000–52,600. Las Km respectivas fueron 12.5 y 6.25 mg ml–1 cuando se utilizó almidón soluble como substrato. El pH optimo para ambos enzimas fue 4.0–5.0. Las temperaturas óptimas para la glucoamilasa I y la glucoamilasa II fueron respectivamente de 60 y 70°C respectivamente. Ambos enzimas eran estables en el intérvalo de pH 3.0–6.0 y a temperaturas por debajo de 50°C. Los dos enzimas eran activos fiente a distintos tipos de almidón y dextrina incluyendo almidón bruto. La glucoamilasa II hidrolizó mejor el almidón bruto que la glucoamilasa I.

Résumé Aspergillus niger H-9 est une souche de moisissure isolée en Thailande à partir de tubercules pourris de manioc. Dans cette étude, la production d'enzymes a été obtenue par fermentation en milieu solide sur son de riz et soja. Deux types de gluco-amylases ont été isolés et purifiés. Les enzymes purifiés sont homogènes en disque-éléctrophorèse sur gel de polyacrylamide. Les poids moléculaires des gluco-amylases I et II sont respectivement de 59,400–72,600 et 43,000–52,000 et leurs Km pour l'amidon soluble de 12.5 et 6.25 mg de glucose/ml. Le pH optimum des deux enzymes est compris entre 4.0 et 5.0. Leurs températures optimales sont respectivement de 60 et 70°C. Les deux enzymes sont stables de pH 3.0–6.0 et aux températures inférieures à 50°C. Les deux gluco-amylases sont actives sur différents types d'amidon et de dextrines, y compris l'amidon cru. Toutefois, la gluco-amylase II hydrolyse l'amidon cru plus activement que la gluco-amylase I.


Paper presented at the VII International Conference on the Global Impacts of Applied Microbiology, Helsinki, 12–16 August 1986.  相似文献   

10.
A. niger produced α-glucosidase, α-amylase and two forms of glucoamylase when grown in a liquid medium containing raw tapioca starch as the carbon source. The glucoamylases, which formed the dominant components of amylolytic activity manifested by the organism, were purified to homogeneity by ammonium sulfate precipitation, ion-exchange and two cycles of gel filtration chromatography. The purified enzymes, designated GA1 and GA2, a raw starch digesting glucoamylase, were found to have molar masses of 74 and 96 kDa and isoelectric points of 3.8 and 3.95, respectively. The enzymes were found to have pH optimum of 4.2 and 4.5 for GA1 and GA2, respectively, and were both stable in a pH range of 3.5–9.0. Both enzymes were thermophilic in nature with temperature optimum of 60 and 65°C, respectively, and were stable for 1 h at temperatures of up to 60°C. The kinetic parametersK m andV showed that with both enzymes the branched substrates, starch and amylopectin, were more efficiently hydrolyzed compared to amylose. GA2, the more active of the two glucoamylases produced, was approximately six to thirteen times more active towards raw starches compared to GA1.  相似文献   

11.
A glucoamylase from Aspergillus niveus was produced by submerged fermentation in Khanna medium, initial pH 6.5 for 72 h, at 40°C. The enzyme was purified by DEAE-Fractogel and Concanavalin A-Sepharose chromatography. The enzyme showed 11% carbohydrate content, an isoelectric point of 3.8 and a molecular mass of 77 and 76 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Bio-Sil-Sec-400 gel filtration, respectively. The pH optimum was 5.0–5.5, and the enzyme remained stable for at least 2 h in the pH range of 4.0–9.5. The temperature optimum was 65°C and retained 100% activity after 240 min at 60°C. The glucoamylase remained completely active in the presence of 10% methanol and acetone. After 120 min hydrolysis of starch, glucose was the unique product formed, confirming that the enzyme was a glucoamylase (1,4-alpha-d-glucan glucohydrolase). The K m was calculated as 0.32 mg ml−1. Circular dichroism spectroscopy estimated a secondary structure content of 33% α-helix, 17% β-sheet and 50% random structure, which is similar to that observed in the crystal structures of glucoamylases from other Aspergillus species. The tryptic peptide sequence analysis showed similarity with glucoamylases from A. niger, A. kawachi, A. ficcum, A. terreus, A. awamori and A. shirousami. We conclude that the reported properties, such as solvent, pH and temperature stabilities, make A. niveus glucoamylase a potentially attractive enzyme for biotechnological applications.  相似文献   

12.
Determination of the apparent pK a's of purified carboxymethylcellulases fromAspergillus niger andCellulomonas biazotea at different temperatures and in the presence of dioxane indicated two side chain carboxyl groups which controlled the limiting rate in both organisms. The thermostability of both enzymes slightly decreased with increasing pH from 5 to 7.5 but was unaffected in the presence of 0.5 mmol/L Mn2+. The CMCase fromC. biazotea had an activation energy of 35 kJ/mol and a half-life of 89 min in the presence of 8 mol/L urea at 40°C. The half-life of CMCase fromA. niger in 8 mol/L urea and at 37°C was 125 min as determined by a 0–9 mol/L transverse urea gradient PAGE. The CMCases fromA. niger andC. biazotea had the same thermostabilities in the absence of CMC although the enzyme from the former was more thermostable in the presence of the substrate. The CMCase fromA. niger was also more efficient in hydrolyzing CMC than the enzyme fromC. biazotea.  相似文献   

13.
The histidine, tyrosine, tryPtoPhan and carboxyl grouPs in the enzyme glucoamylase fromAsPergillus Candidus andRhizoPus sPecies were modified using grouP sPecific reagents. Treatment of the enzyme with diethylPyrocarbonate resulted in the modification of 0.3 and 1 histidine residues with only a slight loss in activity (10% and 35%) of glucoamylase fromAsPergillus candidus andRhizoPus sPecies resPectively. Modification of tyrosine either by N-acetylimidazole or [I125]-leads to a Partial loss of activity. Under denaturing conditions, maltose did not helP in Protecting the enzyme against tyrosine modification or inactivation. Treatment with 2-Hydroxy-5-nitro benzyl bromide in the Presence of urea, Photooxidation at PH 9.0, N-bromosuccinamide at PH 4.8 resulted in a comPlete loss of activity. However, the results of exPeriments in the Presence of maltose and at PH 4.8 Photooxidation and N-bromosuccinamide treatment suggested the Presence of two tryPtoPhan residues at the active site. There was a comPlete loss of enzyme activity when 10 and 28 carboxyl grouPs fromAsPergillus candidus andRhizoPus, resPectively were modified. Modification in the Presence of substrate maltose, showed at least two carboxyl grouPs were Present at the active site of enzyme and that only one active center seems to be involved in breaking ally 3 tyPes of α-glucosidic linkages namely α-1, 4, α-1, 6 and α-l, 3.  相似文献   

14.
Rabbit antisera were prepared against the purified glucoamylases I and II ofAspergillus niger. Relationships between the two enzyme forms were investigated by using the antisera in immunodiffusion and immunoinhibition experiments. Both the forms of glucoamylase gave a single continuous precipitin band demonstrating very close structural resemblance. They gave almost identical immunoprecipitation patterns and had the same equivalence points indicating that the two forms ofA. niger gluoamylases were immunologically identical. The enzyme treated with periodate was immunologically identical with the controls and had slightly less enzyme activity but showed greatly reduced stability on storage at 4‡ C.  相似文献   

15.
Glucose oxidase (from Aspergillus niger), glucoamylase (from Rhizopus spp.), and cellulase (from Aspergillus niger) of fungal origin are all glycosylated proteins. Dehydration of the three enzymes to a range of water potentials did not affect their activity. However, when more than 10% of the carbohydrate associated with the molecules was removed by periodate oxidation, the enzymes were highly susceptible to dehydration when compared with oxidized controls. Polyvinyl pyrrolidone and Dextran T500 protected the three enzymes in their oxidized state against the effects of dehydration.  相似文献   

16.
Starch degrading enzymes, viz., β-amylase, glucoamylase, and pullulanase, were purified using magnetite-alginate beads. In each case, the enzyme activity was eluted by using 1.0 M maltose. β-Amylase (sweet potato), glucoamylase (Aspergillus niger), and pullulanase (Bacillus acidopullulyticus) from their crude preparations were purified 37-, 31-, and 49-fold with 86, 87, and 95% activity recovery, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed single band in each case.  相似文献   

17.
A laboratory reactor equipped with a screw press was used for the hydrolysis of steam-SO2-exploded willowSalix caprea by a composition ofTrichoderma reesei andAspergillus foetidus enzyme preparations at high substrate concentration. Optimal conditions providing the maximal volume of hydrolysis syrup with maximal sugar concentrations were determined. Two different hydrolysis procedures were developed in order to exclude the initial washing of steam-pretreated plant raw material by large volumes of water, which was necessary to eliminate the inhibitory effect of explosion byproducts on enzymatic hydrolysis. The first procedure included enzymatic prehydrolysis of the substrate for 1 h; separation of sugar syrup containing 40–60 g/l glucose, 20–25 g/l xylose, and up to 10 g/l disaccharides, as well as up to 35% of the initial enzymatic activity; then addition of a diluted acetate buffer (pH 4.5); and subsequent hydrolysis of the substrate by the adsorbed enzymes leading to the final accumulation of up to 140 g/l glucose and up to 15 g/l of xylose. In the second scenario, the exploded willow was initially adjusted by alkali to pH 4.5 and then hydrolyzed directly by the added enzymes over 24 h. This procedure resulted in a nearly total polysaccharide hydrolysis and accumulation of up to 170 g/l glucose and 20 g/l xylose. The reasons for inhibition of enzymatic hydrolysis are discussed. Deceased.  相似文献   

18.
The indoor clade of Penicillium chrysogenum, the so-called Fleming clade, is the most common species of Penicillium on moldy building materials. In a previous study, we identified a 52 kDa human antigen characteristic of the indoor clade of P. chrysogenum not present in a taxonomically diverse selection of fungi. Further investigations revealed that it is a modestly glycosylated mature protein with a pI 5.3. The protein is apparently identical to a glucoamylase previously reported from an aluminum-tolerant P. chrysogenum mutant. Based on sequence similarity, molecular weight, and pI, it is distinct from a number of other glucoamylases from domesticated strains of Aspergillus oryzae and A. niger used to produce industrial enzymes. Surprisingly, it had not been reported as an allergen. The monoclonal antibodies developed have the potential for use in assays of P. chrysogenum antigens in spores and spore/mycelial fragments in dust.  相似文献   

19.
Starch has great importance in human diet, since it is a heteropolymer of plants, mainly found in roots, as potato, cassava and arrowroots. This carbohydrate is composed by a highly-branched chain: amylopectin; and a linear chain: amylose. The proportion between the chains varies according to the botanical source. Starch hydrolysis is catalyzed by enzymes of the amilolytic system, named amylases. Among the various enzymes of this system, the glucoamylases (EC 3.2.1.3 glucan 1,4-alpha-glucosidases) are the majority because they hydrolyze the glycosidic linkages at the end of starch chains releasing glucose monomers. In this work, a glucoamylase secreted in the culture medium, by the ascomycete Aspergillus brasiliensis, was immobilized in Dietilaminoetil Sepharose-Polyethylene Glycol (DEAE-PEG), since immobilized biocatalysts are more stable in long periods of hydrolysis, and can be recovered from the final product and reused for several cycles. Glucoamylase immobilization has shown great thermal stability improvement over the soluble enzyme, reaching 66% more activity after 6?h at 60?°C, and 68% of the activity after 10 hydrolysis cycles. A simplex centroid experimental mixture design was applied as a tool to characterize the affinity of the immobilized enzyme for different starchy substrates. In assays containing several proportions of amylose, amylopectin and starch, the glucoamylase from A. brasiliensis mainly hydrolyzed the amylopectin chains, showing to have preference by branched substrates.  相似文献   

20.
A study was carried out on the application of supercritical fluid to the hydrolysis of boll fibers of cotton (cultivar Tashkent-6 ofGossypium hirsutum L.) by cellulase enzymes fromTrichoderma viride, Trichoderma reesei andAspergillus niger. Conditions of the enzymatic process were optimized. The stabilities of cellulase enzymes were sustained, at the pressure of up to 160 atm for 48 hours at 50°C in supercritical carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号