首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Campylobacteriosis is the most frequent zoonosis in developed countries and various domestic animals can function as reservoir for the main pathogens Campylobacter jejuni and Campylobacter coli. In the present study we compared population structures of 730 C. jejuni and C. coli from human cases, 610 chicken, 159 dog, 360 pig and 23 cattle isolates collected between 2001 and 2012 in Switzerland. All isolates had been typed with multi locus sequence typing (MLST) and flaB-typing and their genotypic resistance to quinolones was determined. We used complementary approaches by testing for differences between isolates from different hosts with the proportion similarity as well as the fixation index and by attributing the source of the human isolates with Bayesian assignment using the software STRUCTURE. Analyses were done with MLST and flaB data in parallel and both typing methods were tested for associations of genotypes with quinolone resistance. Results obtained with MLST and flaB data corresponded remarkably well, both indicating chickens as the main source for human infection for both Campylobacter species. Based on MLST, 70.9% of the human cases were attributed to chickens, 19.3% to cattle, 8.6% to dogs and 1.2% to pigs. Furthermore we found a host independent association between sequence type (ST) and quinolone resistance. The most notable were ST-45, all isolates of which were susceptible, while for ST-464 all were resistant.  相似文献   

2.
Aims: To speciate Campylobacter strains from the caeca of chickens in Grenada using PCR and to evaluate DNA‐based typing methods for the characterization of these isolates. Methods and Results: Isolates were speciated with two multiplex PCR assays and were typed with flaA‐RFLP, pulsed‐field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Results confirmed that Campylobacter coli strains were more predominant than Campylobacter jejuni strains. From 56 isolates, 18 were misidentified using biochemical tests. PFGE typing gave the highest discriminatory power among the methods used (Simpson’s index of diversity, D = 0·9061). However, the combination of flaA‐RFLP, PFGE and MLST results gave the highest discrimination for subtyping of these isolates (D = 0·9857). A band position tolerance of 4% in Bio Numerics was the most appropriate for the analysis of this database. MLST profiles were generally concordant with PFGE and/or flaA‐RFLP types. Several isolates exhibited new MLST sequence types (STs), and 43 of the 49 Camp. coli strains belonged to the ST‐828 clonal complex. Conclusions: Campylobacter coli was the most prevalent species isolated from broilers and layers in Grenada, and a combination of restriction and sequence methods was most appropriate for the typing of Camp. coli isolates. Campylobacter coli STs clustered with described poultry‐associated Camp. coli STs by phylogenetic analysis. Significance and Impact of the Study: Further studies to understand the predominance of Camp. coli within Campylobacter spp. from chickens in Grenada may help elucidate the epidemiology of these pathogens in chickens.  相似文献   

3.
We used the multilocus sequence typing (MLST) method to evaluate the genetic diversity of 46 Campylobacter jejuni isolates from chickens and to determine the link between quinolone resistance and sequence type (ST). There were a total of 16 ST genotypes, and the majority of them belonged to seven clonal complexes previously identified by using isolates from human disease. The ST-353 complex was the most common complex, whereas the ST-21, ST-42, ST-52, and ST-257 complexes were less well represented. The resistance phenotype varied for each ST, and the Thr-86-Ile substitution in the GyrA protein was the predominant mechanism of resistance to quinolone. Nine of the 14 isolates having the Thr-86-Ile substitution belonged to the ST-353 complex. MLST showed that the emergence of quinolone resistance is not related to the diffusion of a unique clone and that there is no link between ST genotype and quinolone resistance. Based on silent mutations, different variants of the gyrA gene were shown to exist for the same ST. These data provide useful information for understanding the epidemiology of C. jejuni in Senegal.  相似文献   

4.
Aims: The aim of the study was to investigate the flock prevalence of Campylobacter jejuni and Campylobacter coli in broiler farms in Lithuania and to identify possible persistent strains of Camp. jejuni using amplified fragment length polymorphism (AFLP) typing method. Methods and Results: During 1 year, 42 broiler flocks from 9 broiler farms were examined to determine the prevalence of Campylobacter‐positive broiler flocks in Lithuania. Among 42 broiler flocks examined, 31 flocks (73·8%) were positive for Camp. jejuni and 17 flocks (40·48%) for Camp. coli. Campylobacter jejuni isolates were genotyped by AFLP method using BspDI and BglII restriction enzymes. Typing of 190 isolates generated 50 AFLP genotypes with the highest diversity of strains found in the summer season. Each farm showed one or more predominant AFLP types, and one AFLP type (A32) was found in five broiler farms over a 1‐year period. Conclusions: Campylobacter jejuni and Camp. coli are highly prevalent in broiler farms in Lithuania. Farm‐specific genotypes were identified in all farms examined. Type A32 was present and persisted in different broiler farms, and a common source of transmission of Camp. jejuni was suspected. Significance and Impact of the Study: For the first time, Camp. jejuni in broiler flocks has been genetically characterized in Lithuania. Persistent strains of Camp. jejuni were detected over one period at the beginning of broiler meat production chain and, therefore, the identification of contamination source of such strains and the mechanism of their particular ability to persist are crucial to establish effective control measures against Camp. jejuni infection in broiler farms.  相似文献   

5.

Aims

To evaluate the phenotypic and genotypic profiles of Campylobacter spp. from poultry faecal samples from free range or intensively raised meat chickens and free range egg layers. In addition, a case‐comparison study of antibiotic resistance genes from different groups of poultry and some pig strains previously collected was carried out.

Methods

Resistance to different antibiotics was assessed using the agar dilution method. In addition, all the strains were tested for ampicillin (blaOXA‐61), erythromycin (aph‐3‐1), tetracycline tet(O), streptomycin (aadE), and the energy‐dependent multi‐drug efflux pump (cmeB) resistance genes using multiplex polymerase chain reaction.

Results

The evaluation of phenotypic resistance revealed all of the strains from poultry were sensitive to ciprofloxacin, gentamicin, erythromycin or tylosin. But, widespread resistance to lincomycin (51–100%), extensive resistance to ampicillin (33·3–60·2%) and less resistance to tetracycline (5·6–40·7%) were observed in the different groups of chickens. Antibiotic resistance genes blaOXA‐61, cmeB and tet(O) were found in 82·6–92·7%, 80·3–89% and 22·3–30·9% Camp. coli isolates from pigs, whilst 59–65·4% and 19·2–40·7% Camp. jejuni from chickens were found to encode blaOXA‐61 and tet(O), respectively.

Conclusion

No significant difference between isolates from free range egg layers and meat chickens (P < 0·05) was found. However, there were significant differences between the pig strains and all the groups of poultry strains (P < 0·05) with regard to carriage of resistance genes. In addition, pulsed field gel electrophoresis of selected resistant isolates from the poultry and pig revealed closely related clonal groups.

Significance and Impact of the study

Our results suggest the resistant strains are persisting environmental isolates that have been acquired by the different livestock species. Furthermore, the different treatment practices in poultry and pigs have resulted in differences in resistance profiles in Campylobacter isolates.  相似文献   

6.
Aims: To determine the effect of various enrofloxacin dose regimes on the colonization and selection of resistance in Campylobacter jejuni strain 81116P in experimentally colonized chickens. Methods and Results: Two experiments were undertaken, in which 14‐day‐old chickens were colonized with 1 × 107–1 × 109 CFU g?1Camp. jejuni strain 81116P and then treated with enrofloxacin at 12–500 ppm in drinking water for various times. Caecal colonization levels were determined at various time‐points after start‐of‐treatment, and the susceptibility of recovered isolates to ciprofloxacin was monitored. Resistance was indicated by growth on agar containing 4 μg ml?1 ciprofloxacin, MICs of 16 μg ml?1 and the Thr86Ile mutation in gyrA. Enrofloxacin at doses of 12–250 ppm reduced Camp. jejuni colonization over the first 48–72 h after start‐of‐treatment. The degree of reduction in colonization was dose, but not treatment time, dependent. In all cases, maximal colonization was re‐established within 4–6 days. Fluoroquinolone‐resistant organisms were recoverable within 48 h of start‐of‐treatment; after a further 24 h all recovered isolates were resistant. In contrast, a dose of 500 ppm enrofloxacin reduced colonization to undetectable levels within 48 h, and the treated birds remained Campylobacter negative throughout the remaining experimental period. By high pressure liquid chromatography, for all doses, the maximum concentrations of enrofloxacin and ciprofloxacin in the caecal contents were detected at the point of treatment completion. Thereafter, levels declined to undetectable by 7 days post‐treatment withdrawal. Conclusions: In a model using chickens maximally colonized with Camp. jejuni 81116P, treatment with enrofloxacin, at doses of 12–250 ppm in drinking water, enables the selection, and clonal expansion, of fluoroquinolone‐resistant organisms. However, this is preventable by treatment with 500 ppm of enrofloxacin. Significance and impact of the study: Treatment of chickens with enrofloxacin selects for resistance in Camp. jejuni in highly pre‐colonized birds. However, a dose of 500 ppm enrofloxacin prevented the selection of resistant campylobacters.  相似文献   

7.
Aims: This study was carried out to find the prevalence of various plasmid‐mediated quinolone‐resistant (PMQR) determinants among the quinolone‐resistant clinical isolates of Shigella sp. from paediatric patients in Andaman & Nicobar Islands. Methods and Results: A total of 106 quinolone‐resistant Shigella isolates obtained from paediatric patients during hospital‐based surveillance from January 2003 to June 2010 were screened for the presence of various PMQR determinants. Of 106 isolates, 8 (7·5%) showed the presence of aac (6′)‐Ib‐cr and 3 (2·8%) harboured the qnrB genes with 2 (1·9%) of these isolates showing the presence of both. All the 9 isolates had uniform mutations in gyrA (S83L) and in parC (S80I). Conclusions: The prevalence of fluoroquinolone‐acetylating aminoglycoside acetyltransferase {aac (6′)‐Ib‐cr} gene is higher than qnrB gene among the clinical Shigella isolates. These PMQR determinants were detected in the Shigella isolates obtained from 2008–2010, indicating that it happens in a stepwise manner following the multiple mutations in quinolone resistance‐determining regions increase or extend resistance to quinolones or fluoroquinolones. Significance and Impact of Study: The prevalence of these genes are of grave concern as it may be horizontally transferred to other human pathogenic bacteria and can lead to therapeutic failure as a consequence of antimicrobial resistance, not only for the islands but also for the entire south‐east region. The results obtained should encourage further studies on the implications of the presence, distribution, association and variation of these determinants in our quest for understanding PMQR.  相似文献   

8.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

9.
Aims: To assess whether flies and slugs acquire strains of Campylobacter jejuni and Campylobacter coli present in local ruminant faeces. Methods and Results: Campylobacter was cultured from flies, slugs and ruminant faeces that were collected from a single farm in Scotland over a 19‐week period. The isolates were typed using multi‐locus sequence typing (MLST) and compared with isolates from cattle and sheep faeces. Campylobacter jejuni and Camp. coli were isolated from 5·8% (n = 155, average of 75 flies per pool) and 13·3% (n = 15, average of 8·5 slugs per pool) of pooled fly and slug samples, respectively. The most common sequence type (ST) in flies was Camp. coli ST‐962 (approx. 40%) regardless of the prevalence in local cattle (2·3%) or sheep (25·0%) faeces. Two positive slug pools generated the same ST that has not been reported elsewhere. Conclusions: Despite their low carriage rate, flies are able to acquire Campylobacter STs that are locally present, although the subset carried may be biased when compared to local source. Slugs were shown to carry a previously unreported Campylobacter ST. Significance and Impact of the Study: This study has demonstrated that flies carry viable Campylobacter and may contribute to the transfer of STs within and between groups of animals on farms. Further, they may therefore present a risk to human health via their contact with ready‐to‐eat foods or surfaces.  相似文献   

10.
Aims: To determine the prevalence of carriage of methicillin‐resistant Staphylococcus pseudintermedius (MRSP) among dogs with pyoderma from two small animal hospitals in North China during a 21‐month period and to characterize these isolates. Methods and Results: Swabs were taken from 260 dogs with pyoderma, and the staphylococcal species isolated and methicillin resistance were confirmed phenotypically and genotypically. The identified MRSP isolates were characterized by multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome (SCC) mec typing, testing for susceptibility to nine antimicrobial agents and SmaI‐digested pulsed‐field gel electrophoresis. Thirty‐three (12·7%) dogs were positive for MRSP. The most prevalent genotypes detected among MRSP were ST71(MLST)‐t06(spa)‐II‐III(SCCmec) (n = 22, 66·7%), followed by ST5‐t19 (n = 8, 24·2%), ST126‐III(n = 2, 6·1%) and ST6‐t02‐V (3·0%). All MRSP isolates showed extended resistance to tested antimicrobial agents. Eight different SmaI patterns were observed in 21 typeable MRSP isolates. Conclusions: Clinical isolates of MSRP isolated from dogs in North China belonged to two major clonal lineages ST71 and ST5. Significance and Impact of the Study: This study is the first report on MRSP from canine pyoderma in China. Further surveillance study is needed to gain more detailed data concerning this major clinical challenge in veterinary medicine.  相似文献   

11.
Consumption and handling of chicken meat are well-known risk factors for acquiring campylobacteriosis. This study aimed to describe the Campylobacter jejuni population in Finnish chickens and to investigate the distribution of C. jejuni genotypes on Finnish chicken farms over a period of several years. We included 89.8% of the total C. jejuni population recovered in Finnish poultry during 2004, 2006, 2007, 2008, and 2012 and used multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) to characterize the 380 isolates. The typing data was combined with isolate information on collection-time and farm of origin. The C. jejuni prevalence in chicken slaughter batches was low (mean 3.0%, CI95% [1.8%, 4.2%]), and approximately a quarter of Finnish chicken farms delivered at least one positive chicken batch yearly. In general, the C. jejuni population was diverse as represented by a total of 63 sequence types (ST), but certain predominant MLST lineages were identified. ST-45 clonal complex (CC) accounted for 53% of the isolates while ST-21 CC and ST-677 CC covered 11% and 9% of the isolates, respectively. Less than half of the Campylobacter positive farms (40.3%) delivered C. jejuni-contaminated batches in multiple years, but the genotypes (ST and PFGE types) generally varied from year to year. Therefore, no evidence for a persistent C. jejuni source for the colonization of Finnish chickens emerged. Finnish chicken farms are infrequently contaminated with C. jejuni compared to other European Union (EU) countries, making Finland a valuable model for further epidemiological studies of the C. jejuni in poultry flocks.  相似文献   

12.
Aims: To determine the diversity and population structure of Campylobacter jejuni (C. jejuni) isolates from Danish patients and to examine the association between multilocus sequence typing types and different clinical symptoms including gastroenteritis (GI), Guillain–Barré syndrome (GBS) and reactive arthritis (RA). Methods and Results: Multilocus sequence typing (MLST) was used to characterize 122 isolates, including 18 from patients with RA and 8 from patients with GBS. The GI and RA isolates were collected in Denmark during 2002–2003 and the GBS isolates were obtained from other countries. In overall, 51 sequence types (STs) were identified within 18 clonal complexes (CCs). Of these three CCs, ST‐21, ST‐45 and ST‐22 clonal complexes accounted for 64 percent of all isolates. The GBS isolates in this study significantly grouped into the ST‐22 clonal complex, consistent with the PubMLST database isolates. There was no significant clustering of the RA isolates. Conclusions: Isolates from Denmark were found to be highly genetically diverse. GBS isolates grouped significantly with clonal complex ST‐22, but the absence of clustering of RA isolates indicated that the phylogenetic background for this sequela could not be reconstructed using variation in MLST loci. Possibly, putative RA‐associated genes may vary, by recombination or expression differences, independent of MLST loci. Significance and Impact of the Study: MLST typing of C. jejuni isolates from Danish patients with gastroenteritis confirmed that the diversity of clones in Denmark is comparable to that in other European countries. Furthermore, a verification of the grouping of GBS isolates compared to RA isolates provides information about evolution of the bacterial population resulting in this important sequela.  相似文献   

13.
Aim: We have tested the effect of various combinations of formic acid and sorbate on Campylobacter jejuni colonization in broiler chickens to reduce the colonization of this zoonotic pathogen in broiler chicken flocks. Methods and Results: Chickens were offered feed supplemented with different concentrations and combinations of formic acid and/or potassium sorbate. We found little or no effect on the Camp. jejuni colonization levels in chickens that were given feed supplemented with formic acid alone. A combination of 1·5% formic acid and 0·1% sorbate reduced the colonization of Camp. jejuni significantly, while a concentration of 2·0% formic acid in combination with 0·1% sorbate prevented Camp. jejuni colonization in chickens. This inhibition was replicated in two independent trials with a combination of three different Camp. jejuni strains. Conclusions: Our results show a novel and promising intervention strategy to reduce the incidence of Camp. jejuni in poultry products and to obtain safer food. Significance and Impact of the Study: To ensure food safety, a reduction of the carcass contamination with Camp. jejuni through reduced colonization of this pathogen in broiler chicken flocks is important. A range of organic acids as additives in feed and drinking water have already been evaluated for this purpose. However, no studies have yet shown a complete inhibition of Camp. jejuni colonization in broiler chickens.  相似文献   

14.
Multilocus sequence typing (MLST) and antibiotic resistance patterns of Campylobacter jejuni and Campylobacter coli from retail chicken meat showed high overlap with isolates collected at slaughterhouses, indicating little selection along the production chain. They also showed significant common sequence types with human clinical isolates, revealing chicken meat as a likely source for human infection.  相似文献   

15.
Campylobacter jejuni is one of the leading bacterial causes of food-borne illness in the USA. Molecular typing methods are often used in food safety for identifying sources of infection and pathways of transmission. Moreover, the identification of genetically related isolates (i.e., clades) may facilitate the development of intervention strategies for control and prevention of food-borne diseases. We analyzed the pan genome (i.e., core and variable genes) of 63 C. jejuni isolates recovered from chickens raised in conventional, organic, and free-range poultry flocks to gain insight into the genetic diversity of C. jejuni isolates recovered from different environments. We assessed the discriminatory power of three genotyping methods [i.e., pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and repetitive extragenic palindromic polymerase chain reaction (rep-PCR)]. The rep-PCR fingerprint was generated by determining the presence of repetitive sequences that are interspersed throughout the genome via repetitive extragenic palindromic PCR, enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and BOX element PCR (BOX-PCR) and combining the data to form a composite fingerprint. The genetic fingerprints were subjected to computer-assisted pattern analysis. Comparison of the three genotypic methods revealed that repREB-PCR showed greater discriminatory power than PFGE and MLST. ERIC-PCR and BOX-PCR yielded the highest number of PCR products and greatest reproducibility. Regardless of the genotyping method, C. jejuni isolates recovered from chickens reared in conventional, organic, and free-range environments all exhibit a high level of genotypic diversity.  相似文献   

16.
To obtain genetic information about Campylobacter jejuni and Campylobacter coli from broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were collected in 2008 from the cecum right after slaughter or from the neck skin after processing. We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The MLST analysis revealed that there were 59 known sequence types (STs) and 6 newly defined STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry (CC21, CC45, CC257, and CC828), and these represented 61.8% of all of the investigated isolates. The analysis of 95 isolates from the cecum and from the corresponding carcass neck skin covered 44 different STs, and 54.7% of the pairs had matching genotypes. The data indicate that cross-contamination from various sources during slaughter may occur, although the majority of Campylobacter contamination on carcasses appeared to originate from the slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli isolates, although no mutations were found in C. jejuni isolates. Mutations in the gyrA gene were observed in 18.9% of C. jejuni and 26.8% of C. coli isolates, which included two C. coli strains that carried mutations conferring resistance to both classes of antibiotics. A relationship between specific genotypes and antibiotic resistance/susceptibility was observed.Campylobacteriosis is the leading food-borne bacterial gastroenteritis worldwide (12, 15). In Switzerland, the number of registered campylobacteriosis cases has rapidly increased to more than 100 per 100,000 inhabitants in the past few years (14), and this trend has also been observed in the European Union (EU) (12). However, the real number of cases is likely higher, because not all cases are reported due to the self-limiting nature of the disease and its potentially mild symptoms.Campylobacter jejuni and Campylobacter coli are commonly associated with human infection, and they can be detected in up to 85% and 15% of cases, respectively (33). Despite the important role that C. jejuni and C. coli play as zoonotic pathogens worldwide, there is little information regarding the route(s) of transmission (17). Numerous case-control and modeling studies on the infection sources of C. jejuni and C. coli have suggested that handling and consumption of contaminated poultry meat are associated with a risk of human campylobacteriosis (17, 45, 47, 49, 51). Initial meat contamination with C. jejuni or C. coli from the chicken intestine may occur during commonly used automated slaughter processing through several routes, such as the air, water, previously slaughtered flocks, or machinery (19, 36, 37).Precise genotyping and continuous comparison of the strains obtained from, e.g., the production site, flocks, slaughterhouse, retail meat, and infected humans would help to trace the source of infection and might indicate possible intervention strategies for the contaminated site.DNA sequence-based typing methods, such as multilocus sequence typing (MLST), are well suited for this purpose (28), and MLST has become the method of choice for genotyping of Campylobacter (6, 8). Moreover, extension of the classical MLST technique for C. jejuni and C. coli with sequencing of the short variable region (SVR) within the flagellin-encoding gene flaB allows a more precise differentiation among strains that have the same MLST sequence type (ST) (9, 29). An extended MLST work flow was recently developed that reduces the associated time and cost (24). In addition, the new approach allows genetic determination of antibiotic resistance to quinolones and macrolides. Resistance to these antibiotics is a worldwide issue of concern, as an increasing number of Campylobacter isolates are resistant to them. Strikingly, a number of strains are resistant to ciprofloxacin (a quinolone) and, to a lesser extent, erythromycin (a macrolide), which is problematic, because these drugs are typically used to treat campylobacteriosis. Resistance to quinolones is mainly associated with a point mutation in the DNA gyrase gene (gyrA) at position C257T, and a transition in the 23S rRNA gene at position A2075G is commonly responsible for macrolide resistance (1). Simple sequence-based analysis of these common mutational positions can therefore provide information about the antibiotic susceptibility or resistance of a strain. Besides the prudent use of antibiotics, knowledge about the genetic composition of the infectious agent can be helpful to both treat the disease and prevent the spread of resistant strains.In the current study, MLST, flaB typing, and sequence-based determination of quinolone and macrolide resistances were used to investigate the genetic background of C. jejuni and C. coli isolates collected from Swiss broilers in a spatiotemporal study in 2008. We addressed the following three aspects: (i) the diversity of Campylobacter isolates that were recovered from pooled cecum samples and the carcass neck skin, (ii) the possible impact of cross- and self-contamination during slaughter, and (iii) the antibiotic resistance of Campylobacter strains from the broiler flocks and chicken carcasses. All of the data, including the strain information and trace files, were entered into a commercial Web-based Campylobacter MLST database (SmartGene, Zug, Switzerland). This database allows users to retrieve and compare information for any analyzed strain for monitoring purposes (24).  相似文献   

17.
We used the multilocus sequence typing (MLST) method to evaluate the genetic diversity of 46 Campylobacter jejuni isolates from chickens and to determine the link between quinolone resistance and sequence type (ST). There were a total of 16 ST genotypes, and the majority of them belonged to seven clonal complexes previously identified by using isolates from human disease. The ST-353 complex was the most common complex, whereas the ST-21, ST-42, ST-52, and ST-257 complexes were less well represented. The resistance phenotype varied for each ST, and the Thr-86-Ile substitution in the GyrA protein was the predominant mechanism of resistance to quinolone. Nine of the 14 isolates having the Thr-86-Ile substitution belonged to the ST-353 complex. MLST showed that the emergence of quinolone resistance is not related to the diffusion of a unique clone and that there is no link between ST genotype and quinolone resistance. Based on silent mutations, different variants of the gyrA gene were shown to exist for the same ST. These data provide useful information for understanding the epidemiology of C. jejuni in Senegal.  相似文献   

18.
Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007–2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009–2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates resulted in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.  相似文献   

19.
Campylobacter jejuni is a frequent cause of enteritis and sometimes it requires antimicrobial therapy. We have studied the evolution of resistance to nine antibiotics from 1990 to 1994 and investigated how frequently gyrA mutations are involved in the acquisition of quinolone resistance. The percentage of chloramphenicol-, clindamycin-, tertracycline- and amoxicillin plus clavulanic acid-resistant strains has remained practically unchanged and erythromycin and gentamicin resistance has decreased, whereas the percentage of ampicillin-, nalidixic acid- or ciprofloxacin-resistant strains has almost doubled in the follow-up period, from 56 to 76% for ampicillin- and from 47.5 to 88% for quinolone-resistant strains. This study clearly shows that a mutation in Thr-86 to Ile or Lys is a frequent mechanism associated with the acquisition of a high level of resistance to quinolones in clinical isolates of C. jejuni.  相似文献   

20.
Campylobacter jejuni is one of the most common bacterial causes of human gastroenteritis, and recent findings suggest that turkeys are an important reservoir for this organism. In this study, 80 C. jejuni isolates from eastern North Carolina were characterized for resistance to nine antimicrobials, and strain types were determined by fla typing, pulsed-field gel electrophoresis (PFGE) with SmaI and KpnI, and (for 41 isolates) multilocus sequence typing (MLST). PFGE analysis suggested that many of the isolates (37/40 [ca. 93%]) in a major genomic cluster had DNA that was partially methylated at SmaI sites. Furthermore, 12/40 (30%) of the isolates in this cluster were completely resistant to digestion by KpnI, suggesting methylation at KpnI sites. MLST of 41 isolates identified 10 sequence types (STs), of which 4 were new. Three STs (ST-1839, ST-2132 and the new ST-2934) were predominant and were detected among isolates from different farms. The majority of the isolates (74%) were resistant to three or more antimicrobials, and resistance to ciprofloxacin was common (64%), whereas resistance to the other drug of choice for treatment of human campylobacteriosis, erythromycin, was never encountered. Most (33/34) of the kanamycin-resistant isolates were also resistant to tetracycline; however, only ca. 50% of the tetracycline-resistant isolates were also kanamycin resistant. Isolates with certain antimicrobial resistance profiles had identical or closely related strain types. Overall, the findings suggest dissemination of certain clonal groups of C. jejuni isolates in the turkey production industry of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号