首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NK cells express receptors that allow them to recognize pathogens and activate effector functions such as cytotoxicity and cytokine production. Among these receptors are the recently identified TLRs that recognize conserved pathogen structures and initiate innate immune responses. We demonstrate that human NK cells express TLR3, TLR7, and TLR8 and that these receptors are functional. TLR3 is expressed at the cell surface where it functions as a receptor for polyinosinic acid:cytidylic acid (poly(I:C)) in a lysosomal-independent manner. TLR7/8 signaling is sensitive to chloroquine inhibition, indicating a requirement for lysosomal signaling as for other cell types. Both R848, an agonist of human TLR7 and TLR8, and poly(I:C) activate NK cell cytotoxicity against Daudi target cells. However, IFN-gamma production is differentially regulated by these TLR agonists. In contrast to poly(I:C), R848 stimulates significant IFN-gamma production by NK cells. This is accessory cell dependent and is inhibited by addition of a neutralizing anti-IL-12 Ab. Moreover, stimulation of purified monocyte populations with R848 results in IL-12 production, and reconstitution of purified NK cells with monocytes results in increased IFN-gamma production in response to R848. In addition, we demonstrate that while resting NK cells do not transduce signals directly in response to R848, they can be primed to do so by prior exposure to either IL-2 or IFN-alpha. Therefore, although NK cells can be directly activated by TLRs, accessory cells play an important and sometimes essential role in the activation of effector functions such as IFN-gamma production and cytotoxicity.  相似文献   

2.
The poliovirus receptor (PVR) belongs to a large family of Ig molecules called nectins and nectin-like proteins, which mediate cell-cell adhesion, cell migration, and serve as entry receptors for viruses. It has been recently shown that human NK cells recognize PVR through the receptor DNAM-1, which triggers NK cell stimulation in association with beta(2) integrin. In this study, we show that NK cells recognize PVR through an additional receptor, CD96, or T cell-activated increased late expression (Tactile). CD96 promotes NK cell adhesion to target cells expressing PVR, stimulates cytotoxicity of activated NK cells, and mediates acquisition of PVR from target cells. Thus, NK cells have evolved a dual receptor system that recognizes nectins and nectin-like molecules on target cells and mediates NK cell adhesion and triggering of effector functions. As PVR is highly expressed in certain tumors, this receptor system may be critical for NK cell recognition of tumors.  相似文献   

3.
Normal human peripheral blood lymphocytes (PBL) express several in vitro cytotoxic functions, among which are natural killer (NK), antibody-dependent cellular cytotoxicity (ADCC), and lectin-dependent cellular cytotoxicity (LDCC). The relationship of these various cytotoxic functions and the identity of cells involved has been a subject of controversy. Recently it was reported that NK and K for ADCC can be mediated by the same cell, suggesting that they constitute in large part a single subpopulation with multiple cytotoxic functions. The ability of this NK/K effector cell to mediate LDCC was examined here using the two target conjugate assay. The effector cells were Ficoll-Hypaque PBL or LGL-enriched fractions. The targets used were K562 or MOLT for NK, RAJI coated with antibody for ADCC, and RAJI coated with PHA or Con A or modified by NaIO4 for LDCC. In the two-target conjugate assay, one of the targets is fluorescein labeled for identification. The results show that (a) LDCC copurifies with NK/K and is enriched in the LGL fraction, as measured in both the 51Cr-release assay and the single-cell assay for cytotoxicity; (b) single effector cells simultaneously bind to NK or ADCC and LDCC targets, revealing that single cells bear binding receptors for all targets; and (c) single lymphocytes were not able to kill both bound NK/K and LDCC targets. However, significant two-target killing was obtained when both targets were NK targets, ADCC targets, LDCC targets, or one NK and one ADCC target. These results demonstrate that the NK and LDCC effector cells are distinct subpopulations copurified in the LGL fraction. In addition, the results show that lectin is unable to trigger globally an NK effector cell to mediate cytotoxicity against a bound NK insensitive target. Thus, although both NK and LDCC effector cells are present in the LGL fraction and can bind to both types of targets, the trigger of the lethal hit event is the function of specialized effector cells.  相似文献   

4.
NKp30-dependent cytolysis of filovirus-infected human dendritic cells   总被引:1,自引:0,他引:1  
Understanding how protective innate immune responses are generated is crucial to defeating highly lethal emerging pathogens. Accumulating evidence suggests that potent innate immune responses are tightly linked to control of Ebola and Marburg filoviral infections. Here, we report that unlike authentic or inactivated Ebola and Marburg, filovirus-derived virus-like particles directly activated human natural killer (NK) cells in vitro, evidenced by pro-inflammatory cytokine production and enhanced cytolysis of permissive target cells. Further, we observed perforin- and CD95L-mediated cytolysis of filovirus-infected human dendritic cells (DCs), primary targets of filovirus infection, by autologous NK cells. Gene expression knock-down studies directly linked NK cell lysis of infected DCs to upregulation of the natural cytotoxicity receptor, NKp30. These results are the first to propose a role for NK cells in the clearance of infected DCs and the potential involvement of NKp30-mediated cytolysis in control of viral infection in vivo. Further elucidation of the biology of NK cell activation, specifically natural cytotoxicity receptors like NKp30 and NKp46, promises to aid our understanding of microbial pathology.  相似文献   

5.
Palmitate-derivatized antibody molecules can function as surrogate receptors when incorporated into the plasma membranes of nylon wool non-adherent spleen cells. Surrogate receptor molecules are attached to the membranes by insertion of the palmitate hydrocarbon chains into the phospholipid bilayer. This mode of attachment precludes interactions between surrogate receptors and intracellular and intramembranous structures. Despite these limitations, surrogate receptors consisting of either palmitate-derivatized intact antibody molecules or their corresponding F(ab')2 fragments specific for Ag on syngeneic B lymphocytes or hapten-modified EL-4 lymphoma cells can direct cell-mediated cytotoxic activity against the appropriate target. Treatment of the surrogate receptor-decorated effector cell populations with anti-asialo GM1 plus C eliminated the observed target cell lysis, suggesting a role for NK cells in this cytolytic process. The efficiency of this surrogate receptor-mediated cellular cytotoxicity parallels that of natural receptor-mediated target cell lysis and is not limited by inherent resistance of a target cell to NK cell-mediated cytotoxicity. Application of this technology to study the requirements for productive lytic interactions between effector and target cells may provide valuable insights into the mechanism of cell-mediated cytotoxicity. Furthermore, these results provide the rationale for future studies designed to evaluate the ability of surrogate receptors to focus cytotoxic cell activity onto a specified target in situ, in an attempted elimination of diseased cells.  相似文献   

6.
NK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression. Unexpectedly, although these clones expressed NKG2D and mediated a strong cytolytic activity toward K562, Daudi and allogeneic MHC-class I+ carcinoma cells, they were unable to lyse the autologous MHC-I- tumor cell line. This defect was associated with alterations in the expression of natural cytotoxicity receptor (NCR) by NK cells and the NKG2D ligands, MHC-I-related chain A, MHC-I-related chain B, and UL16 binding protein 1, and the ICAM-1 by tumor cells. In contrast, the carcinoma cell line was partially sensitive to allogeneic healthy donor NK cells expressing high levels of NCR. Indeed, this lysis was inhibited by anti-NCR and anti-NKG2D mAbs, suggesting that both receptors are required for the induced killing. The present study indicates that the MHC-I-deficient lung adenocarcinoma had developed mechanisms of escape from the innate immune response based on down-regulation of NCR and ligands required for target cell recognition.  相似文献   

7.
Natural killer (NK) cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR) family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.  相似文献   

8.
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.  相似文献   

9.
The present study strongly suggests that, in humans, natural killer (NK) activity and antibody-dependent cell-mediated cytotoxicity (ADCC) are mediated by the same effector cell population. This is supported by two different experimental approaches. First, competition for NK effector cells was accompanied by simultaneous inhibition of ADCC activity. Target cells sensitive to NK activity were capable of inhibiting specifically an ADCC assay in cold target competition experiments. Second, specific removal of NK cells on monolayers formed by target cells sensitive to NK activity caused simultaneous depletion of ADCC effector cells. In association with the removal on the monolayers of effector cells for ADCC as well as NK activity, we also found a significant depletion of cells bearing Fc gamma receptors.  相似文献   

10.
NK cell effector functions are controlled by a combination of inhibitory receptors, which modulate NK cell activation initiated by stimulatory receptors. Most of the canonical NK cell inhibitory receptors recognize allelic forms of classical and non-classical MHC class I molecules. Furthermore, high expression of MHC-I molecules on effector immune cells is also associated with reverse signaling, giving rise to several immune-regulatory functions. Consequently, the inhibitory function of MHC class I expressed on a human NKL cell line and activated primary NK and T cells on different activating receptors are analyzed in this paper. Our results reveal that MHC-I molecules display specific patterns of “selective” inhibition over cytotoxicity and cytokine production induced by ITAM-dependent receptors and 2B4, but not on NKG2D. This contrasts with the best known “canonical” inhibitory receptors, which constitutively inhibit both functions, regardless of the activating receptor involved. Our results support the existence of a new fine-tuner inhibitory function for MHC-I molecules expressed on cytotoxic effector cells that could be involved in establishing self-tolerance in mature activated NK cells, and could also be important in tumor and infected cell recognition.  相似文献   

11.
NK cells are effector lymphocytes that can recognize and eliminate virally infected and transformed cells. NK cells express distinct activating receptors, including an ITAM-containing FcR complex that recognizes Ab-coated targets, and the DNAX-activating protein of 10 kDa-containing NKG2D receptor complex that recognizes stress-induced ligands. The regulatory role of specific tyrosine kinases in these pathways is incompletely understood. In this study, we show that, in activated human NK cells, the tyrosine kinase IL-2-inducible T cell kinase (Itk), differentially regulates distinct NK-activating receptors. Enhanced expression of Itk leads to increases in calcium mobilization, granule release, and cytotoxicity upon stimulation of the ITAM-containing FcR, suggesting that Itk positively regulates FcR-initiated cytotoxicity. In contrast, enhanced Itk expression decreases cytotoxicity and granule release downstream of the DNAX-activating protein of 10 kDa-containing NKG2D receptor, suggesting that Itk is involved in a pathway of negative regulation of NKG2D-initiated granule-mediated killing. Using a kinase mutant, we show that the catalytic activity of Itk is required for both the positive and negative regulation of these pathways. Complementary experiments where Itk expression was suppressed also showed differential regulation of the two pathways. These findings suggest that Itk plays a complex role in regulating the functions initiated by distinct NK cell-activating receptors. Moreover, understanding how these pathways may be differentially regulated has relevance in the setting of autoimmune diseases and antitumor immune responses where NK cells play key regulatory roles.  相似文献   

12.
Leukocyte associated Ig-like receptor-1 (LAIR-1) is a surface molecule expressed on human mononuclear leukocytes that functions as an inhibitory receptor on human NK cells. In addition to NK cells, LAIR-1 is expressed on T cells, B cells, macrophages, and dendritic cells. Most cells express two biochemically distinct forms of LAIR-1, which we now show are likely alternative splice variants of the same gene. Cross-linking of LAIR-1 on human T cell clones results in inhibition of cytotoxicity only in T cell clones that lack CD28 and are able to spontaneously lyse certain targets in vitro. Moreover, the cytolytic activity of freshly isolated T cells, which is thought to be mainly due to "effector" T cells, can be inhibited by anti-LAIR-1 mAb. Thus, LAIR-1 functions as an inhibitory receptor not only on NK cells, but also on human T cells. This indicates that LAIR-1 provides a mechanism of regulation of effector T cells and may play a role in the inhibition of unwanted bystander responses mediated by Ag-specific T cells.  相似文献   

13.
Natural killer cells were named after their ability to mediate spontaneous cytotoxicity during innate immune responses. However, it has become clear in recent years that they play an equally important role in restricting infections and assisting the development of adaptive immune responses via their ability to produce cytokines. In humans, a dedicated NK cell subset primarily fulfills these later functions. In this review we discuss the noncytotoxic effector functions of NK cells and how they could be harnessed for immunotherapy and vaccine development.  相似文献   

14.
Interaction of mannose 6-phosphate-specific receptors with their ligands has been suggested to be essential for natural killer cell (NK)-mediated cytotoxicity. Indeed, mannose 6-phosphate-specific receptors and ligands bearing mannose 6-phosphate residues are demonstrable on human peripheral blood leukocytes with NK activity as well as on K-562 NK target cells, allowing at least in principle such an interaction. It can also be shown that NK activity of human peripheral blood leukocytes is inhibited by mannose 6-phosphate. The following observations, however, exclude an essential role of the mannose 6-phosphate receptor-ligand system in NK cell-mediated cytotoxicity. 1) NK cytotoxicity is sensitive to a broad range of structurally unrelated sugar phosphates. 2) NK activity is normal in patients with I cell disease (mucolipidosis II), which due to a genetic defect are unable to synthesize the ligands for the mannose 6-phosphate-specific receptor. 3) NK cytotoxicity is not inhibited by an antiserum against the mannose 6-phosphate receptor, which blocks the receptor function.  相似文献   

15.
16.
Here, we present data suggesting a novel mechanism for regulation of natural killer (NK) cell cytotoxicity through inhibitory receptors. Interaction of activation receptors with their ligands on target cells induces cytotoxicity by NK cells. This activation is under negative control by inhibitory receptors that recruit tyrosine phosphatase SHP-1 upon binding major histocompatibility class I on target cells. How SHP-1 blocks the activation pathway is not known. To identify SHP-1 substrates, an HLA-C-specific inhibitory receptor fused to a substrate-trapping mutant of SHP-1 was expressed in NK cells. Phosphorylated Vav1, a regulator of actin cytoskeleton, was the only protein detectably associated with the catalytic site of SHP-1 during NK cell contact with target cells expressing HLA-C. Vav1 trapping was independent of actin polymerization, suggesting that inhibition of cellular cytotoxicity occurs through an early dephosphorylation of Vav1 by SHP-1, which blocks actin-dependent activation signals. Such a mechanism explains how inhibitory receptors can block activating signals induced by different receptors.  相似文献   

17.
The inhibition of NK cell killing is mainly mediated via the interaction of NK inhibitory receptors with MHC class I proteins. In addition, we have previously demonstrated that NK cells are inhibited in a class I MHC-independent manner via homophilic carcinoembryonic Ag (CEA) cell adhesion molecules (CEACAM1)-CEACAM1 and heterophilic CEACAM1-CEA interactions. However, the cross-talk between immune effector cells and their target cells is not limited to cell interactions per se, but also involves a specific exchange of proteins. The reasons for these molecular exchanges and the functional outcome of this phenomenon are still mostly unknown. In this study, we show that NK cells rapidly and specifically acquire CEA molecules from target cells. We evaluated the role of cytotoxicity in the acquisition of CEA and demonstrated it to be mostly killing independent. We further demonstrate that CEA transfer requires a specific interaction with an unknown putative NK cell receptor and that carbohydrates are probably involved in CEA recognition and acquisition by NK cells. Functionally, the killing of bulk NK cultures was inhibited by CEA-expressing cells, suggesting that this putative receptor is an inhibitory receptor.  相似文献   

18.
自然杀伤细胞(NK细胞)可表达两类功能相悖的识别受体,即活化受体(KAR)和抑制受体(KIR)。KIR能识别自身细胞上的MHCⅠ类分子与自身或外来肽形成2的复合物,所产生的抑制信号可阴断KAR的活化,以此抑制NK细胞的细胞毒作用。如果靶细胞失去KIR所识别的配体,NK细胞即可通过KAR对靶细胞进行攻击。本文将介绍此类受体的结构及基识别与信号转导机制的研究进展。  相似文献   

19.
The effect of eicosapentaenoic acid (EPA) on natural killer (NK) cell activity of human lymphocytes was examined. The addition of an emulsion of trieicosapentaenoyl-glycerol (EPA-TG) emulsified with purified phosphatidylcholine from krill to a cytotoxicity assay system resulted in a marked depression of NK activity. The inhibition was proportional to the concentration of EPA-TG emulsion, and was observed as early as the first one hour of incubation at various effector to target cell ratios. Pretreatment of effector cells with EPA-TG emulsion resulted in significant suppression of their NK activity. Inhibition of cytotoxicity was not due to direct toxicity to effector cells or decreased target cell binding. These results indicate that EPA is a potent inhibitor of NK activity in vitro.  相似文献   

20.
NK cells are important for innate resistance to tumors and viruses. Engagement of activating Ly-49 receptors expressed by NK cells leads to rapid NK cell activation resulting in target cell lysis and cytokine production. The ITAM-containing DAP12 adapter protein stably associates with activating Ly-49 receptors, and couples receptor recognition with generation of NK responses. Activating Ly-49s are potent stimulators of murine NK cell functions, yet how they mediate such activities is not well understood. We demonstrate that these receptors trigger LFA-1-dependent tight conjugation between NK cells and target cells. Furthermore, we show that activating Ly-49 receptor engagement leads to rapid DAP12-dependent up-regulation of NK cell LFA-1 adhesiveness to ICAM-1 that is also dependent on tyrosine kinases of the Syk and Src families. These results indicate for the first time that activating Ly-49s control adhesive properties of LFA-1, and by DAP12-dependent inside-out signaling. Ly-49-driven mobilization of LFA-1 adhesive function may represent a fundamental proximal event during NK cell interactions with target cells involving activating Ly-49 receptors, leading to target cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号