共查询到20条相似文献,搜索用时 0 毫秒
1.
Many issues concerning the evolution of spliceosomal introns remain poorly understood. In this respect, the reconstruction of the evolution of introns in deep branching species such as alveolates is of special significance. In this study, we inferred the intron evolution in alveolates using 3,368 intron positions in 162 orthologs from 10 species (9 alveolates and 1 outgroup, Homo sapiens). We found that although very few intron gains and losses have occurred in Theileria and Plasmodium recently, many intron gains and losses have occurred in the evolution of alveolates. Thus, the rates of intron gain and loss in alveolates have varied greatly across time and lineage. Our results seem to support the notion that massive intron gains and losses have occurred during short episodes, perhaps coinciding with major evolutionary events. 相似文献
2.
Origin and evolution of spliceosomal introns 总被引:1,自引:0,他引:1
ABSTRACT: Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers' Reports section. 相似文献
3.
Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns 总被引:12,自引:2,他引:12
Bon E Casaregola S Blandin G Llorente B Neuvéglise C Munsterkotter M Guldener U Mewes HW Van Helden J Dujon B Gaillardin C 《Nucleic acids research》2003,31(4):1121-1135
As part of the exploratory sequencing program Génolevures, visual scrutinisation and bioinformatic tools were used to detect spliceosomal introns in seven hemiascomycetous yeast species. A total of 153 putative novel introns were identified. Introns are rare in yeast nuclear genes (<5% have an intron), mainly located at the 5′ end of ORFs, and not highly conserved in sequence. They all share a clear non-random vocabulary: conserved splice sites and conserved nucleotide contexts around splice sites. Homologues of metazoan snRNAs and putative homologues of SR splicing factors were identified, confirming that the spliceosomal machinery is highly conserved in eukaryotes. Several introns’ features were tested as possible markers for phylogenetic analysis. We found that intron sizes vary widely within each genome, and according to the phylogenetic position of the yeast species. The evolutionary origin of spliceosomal introns was examined by analysing the degree of conservation of intron positions in homologous yeast genes. Most introns appeared to exist in the last common ancestor of present day yeast species, and then to have been differentially lost during speciation. However, in some cases, it is difficult to exclude a possible sliding event affecting a pre-existing intron or a gain of a novel intron. Taken together, our results indicate that the origin of spliceosomal introns is complex within a given genome, and that present day introns may have resulted from a dynamic flux between intron conservation, intron loss and intron gain during the evolution of hemiascomycetous yeasts. 相似文献
4.
John M Logsdon Jr 《Current opinion in genetics & development》1998,8(6):637-648
Does the intron/exon structure of eukaryotic genes belie their ancient assembly by exon-shuffling or have introns been inserted into preformed genes during eukaryotic evolution? These are the central questions in the ongoing ‘introns-early’ versus ‘introns-late’ controversy. The phylogenetic distribution of spliceosomal introns continues to strongly favor the intronslate theory. The introns-early theory, however, has claimed support from intron phase and protein structure correlations. 相似文献
5.
Theories regarding the evolution of spliceosomal introns differ in the extent to which the distribution of introns reflects either a formative role in the evolution of protein-coding genes or the adventitious gain of genetic elements. Here, systematic methods are used to assess the causes of the present-day distribution of introns in 10 families of eukaryotic protein-coding genes comprising 1,868 introns in 488 distinct alignment positions. The history of intron evolution inferred using a probabilistic model that allows ancestral inheritance of introns, gain of introns, and loss of introns reveals that the vast majority of introns in these eukaryotic gene families were not inherited from the most recent common ancestral genes, but were gained subsequently. Furthermore, among inferred events of intron gain that meet strict criteria of reliability, the distribution of sites of gain with respect to reading-frame phase shows a 5:3:2 ratio of phases 0, 1 and 2, respectively, and exhibits a nucleotide preference for MAG GT (positions -3 to +2 relative to the site of gain). The nucleotide preferences of intron gain may prove to be the ultimate cause for the phase bias. The phase bias of intron gain is sufficient to account quantitatively for the well-known 5:3:2 bias in phase frequencies among extant introns, a conclusion that holds even when taxonomic heterogeneity in phase patterns is considered. Thus, intron gain accounts for the vast majority of extant introns and for the bias toward phase 0 introns that previously was interpreted as evidence for ancient formative introns. 相似文献
6.
Background
We have studied spliceosomal introns in the ribosomal (r)RNA of fungi to discover the forces that guide their insertion and fixation. 相似文献7.
Janice J Pande A Weiner J Lin CF Makałowski W 《International journal of biological sciences》2012,8(3):344-352
Most of eukaryotic genes are interrupted by introns that need to be removed from pre-mRNAs before they can perform their function. This is done by complex machinery called spliceosome. Many eukaryotes possess two separate spliceosomal systems that process separate sets of introns. The major (U2) spliceosome removes majority of introns, while minute fraction of intron repertoire is processed by the minor (U12) spliceosome. These two populations of introns are called U2-type and U12-type, respectively. The latter fall into two subtypes based on the terminal dinucleotides. The minor spliceosomal system has been lost independently in some lineages, while in some others few U12-type introns persist. We investigated twenty insect genomes in order to better understand the evolutionary dynamics of U12-type introns. Our work confirms dramatic drop of U12-type introns in Diptera, leaving these genomes just with a handful cases. This is mostly the result of intron deletion, but in a number of dipteral cases, minor type introns were switched to a major type, as well. Insect genes that harbor U12-type introns belong to several functional categories among which proteins binding ions and nucleic acids are enriched and these few categories are also overrepresented among these genes that preserved minor type introns in Diptera. 相似文献
8.
How exon-intron structures of eukaryotic genes evolved under various evolutionary forces remains unknown. The phases of spliceosomal introns (the placement of introns with respect to reading frame) provide an opportunity to approach this question. When a large number of nuclear introns in protein-coding genes were analyzed, it was found that most introns were of phase 0, which keeps codons intact. We found that the phase distribution of spliceosomal introns is strongly correlated with the sequence conservation of splice signals in exons; the relatively underrepresented phase 2 introns are associated with the lowest conservation, the relatively overrepresented phase 0 introns display the highest conservation, and phase 1 introns are intermediate. Given the detrimental effect of mutations in exon sequences near splice sites as found in molecular experiments, the underrepresentation of phase 2 introns may be the result of deleterious-mutation-driven intron loss, suggesting a possible genetic mechanism for the evolution of intron-exon structures. 相似文献
9.
Background
The origin of spliceosomal introns is the central subject of the introns-early versus introns-late debate. The distribution of intron phases is non-uniform, with an excess of phase-0 introns. Introns-early explains this by speculating that a fraction of present-day introns were present between minigenes in the progenote and therefore must lie in phase-0. In contrast, introns-late predicts that the nonuniformity of intron phase distribution reflects the nonrandomness of intron insertions. 相似文献10.
11.
Chiao-Feng Lin Stephen M Mount Artur Jarmołowski Wojciech Makałowski 《BMC evolutionary biology》2010,10(1):47
Background
Many multicellular eukaryotes have two types of spliceosomes for the removal of introns from messenger RNA precursors. The major (U2) spliceosome processes the vast majority of introns, referred to as U2-type introns, while the minor (U12) spliceosome removes a small fraction (less than 0.5%) of introns, referred to as U12-type introns. U12-type introns have distinct sequence elements and usually occur together in genes with U2-type introns. A phylogenetic distribution of U12-type introns shows that the minor splicing pathway appeared very early in eukaryotic evolution and has been lost repeatedly. 相似文献12.
Nahal Ahmadinejad Tal Dagan Nicole Gruenheit William Martin Toni Gabaldón 《BMC evolutionary biology》2010,10(1):57
Background
Spliceosomal introns are an ancient, widespread hallmark of eukaryotic genomes. Despite much research, many questions regarding the origin and evolution of spliceosomal introns remain unsolved, partly due to the difficulty of inferring ancestral gene structures. We circumvent this problem by using genes originated by endosymbiotic gene transfer, in which an intron-less structure at the time of the transfer can be assumed. 相似文献13.
Hydrogenases: active site puzzles and progress 总被引:1,自引:0,他引:1
Armstrong FA 《Current opinion in chemical biology》2004,8(2):133-140
Recent research on the hydrogenase reactions has sought to probe beyond the information that is provided by X-ray diffraction structures. The major challenge of locating 'transient' hydrogen atoms in species that are potential catalytic intermediates is being addressed, using advanced electron paramagnetic resonance (EPR) techniques and theoretical methods. This article discusses recent progress towards a consensus on the structures of different states of the active site of hydrogenases, the mechanisms of activation and hydrogen cycling. 相似文献
14.
Haidong Tan 《Molecular biology reports》2010,37(3):1551-1557
What caused spliceosomal introns gain remains an unsolved problem. To this, defining what spliceosomal introns arise from
is critical. Here, the introns density of the genomes is calculated for four species, indicating:(1) sex chromosomes in mammals
have lower intron densities, (2) despite that, the proportion of UTRs (untranslated regions) with introns in sex chromosomes
is higher than other ones, and (3) AT content of introns is more similar to that of intergenic regions when these regions
comprise the majority of a chromosome, and more similar to that of exons, when exons are the majority of the chromosome. On
the other hand, introns have been clearly demonstrated to invade genetic sequences in recent times while sex chromosomes evolved
from a pair of autosomes within the last 300 millions years. One main difference between sex chromosomes and autosomes in
mammalian is that sex chromosomes recombination stopped. Thus, recombination might be the main determinant for eukaryotes
gaining spliceosomal introns. To further prove that and avoid giving weak signal, the whole genomes from eight eukaryotic
species are analyzed and present strong signal for above the trend (3) in three species (t-test, P = 0.55 for C. elegans, P = 0.72 for D. melanogaster and P = 0.83 for A. thaliana). These results suggest that the genome-wide coincidence as above (3) can only be caused by the large-scale random unequal
crossover in eukaryote meiosis, which might have fueled spliceosomal introns but hardly occurred in prokaryotes. 相似文献
15.
The role of introns in evolution 总被引:6,自引:0,他引:6
J H Rogers 《FEBS letters》1990,268(2):339-343
What are the roles of 'classical' introns in the evolution of nuclear genes, and what was the origin of these introns? Exon shuffling has been important in the evolution of cell surface and extracellular proteins, but the evidence for it in respect of intracellular proteins is weak. Intron distributions imply that some introns have been removed while others have been inserted in the course of evolution: ancestral patterns of introns may thus have been obscured. Recent evidence on the self-splicing and reverse-splicing abilities of Group II introns supports the hypothesis that these could have been the ancestors of classical introns. 相似文献
16.
17.
Background
Certain eukaryotic genomes, such as those of the amitochondriate parasites Giardia and Trichomonas, have very low intron densities, so low that canonical spliceosomal introns have only recently been discovered through genome sequencing. These organisms were formerly thought to be ancient eukaryotes that diverged before introns originated, or at least became common. Now however, they are thought to be members of a supergroup known as excavates, whose members generally appear to have low densities of canonical introns. Here we have used environmental expressed sequence tag (EST) sequencing to identify 17 genes from the uncultivable oxymonad Streblomastix strix, to survey intron densities in this most poorly studied excavate group. 相似文献18.
Bhattacharya D Lutzoni F Reeb V Simon D Nason J Fernandez F 《Molecular biology and evolution》2000,17(12):1971-1984
Spliceosomal (pre-mRNA) introns have previously been found in eukaryotic protein-coding genes, in the small nuclear RNAs of some fungi, and in the small- and large-subunit ribosomal DNA genes of a limited number of ascomycetes. How the majority of these introns originate remains an open question because few proven cases of recent and pervasive intron origin have been documented. We report here the widespread occurrence of spliceosomal introns (69 introns at 27 different sites) in the small- and large-subunit nuclear-encoded rDNA of lichen-forming and free-living members of the Ascomycota. Our analyses suggest that these spliceosomal introns are of relatively recent origin, i.e., within the Euascomycetes, and have arisen through aberrant reverse-splicing (in trans) of free pre-mRNA introns into rRNAs. The spliceosome itself, and not an external agent (e.g., transposable elements, group II introns), may have given rise to these introns. A nonrandom sequence pattern was found at sites flanking the rRNA spliceosomal introns. This pattern (AG-intron-G) closely resembles the proto-splice site (MAG-intron-R) postulated for intron insertions in pre-mRNA genes. The clustered positions of spliceosomal introns on secondary structures suggest that particular rRNA regions are preferred sites for insertion through reverse-splicing. 相似文献
19.
Analysis of the exon-intron structures of 2208 human genes has revealed that there is a statistically highly significant excess of phase 1 introns in the vicinity of the signal peptide cleavage sites. It is suggested that amino acid sequences surrounding signal peptide cleavage sites are significantly enriched in phase 1 proto-splice sites and this has favored insertion of spliceosomal introns in these sites. 相似文献
20.