首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A complete single unit of a ribosomal RNA gene (rDNA) of M. croslandi was sequenced. The ends of the 18S, 5.8S and 28S rRNA genes were determined by using the sequences of D. melanogaster rDNAs as references. Each of the tandemly repeated rDNA units consists of coding and non-coding regions whose arrangement is the same as that of D. melanogaster rDNA. The intergenic spacer (IGS) contains, as in other species, a region with subrepeats, of which the sequences are different from those previously reported in other insect species. The length of IGSs was estimated to be 7-12 kb by genomic Southern hybridization, showing that an rDNA repeating unit of M. croslandi is 14-19 kb-long. The sequences of the coding regions are highly conserved, whereas IGS and ITS (internal transcribed spacer) sequences are not. We obtained clones with insertions of various sizes of R2 elements, the target sequence of which was found in the 28S rRNA coding region. A short segment in the IGS that follows the 3' end of the 28S rRNA gene was predicted to form a secondary structure with long stems.  相似文献   

3.
4.
We cloned and sequenced the Vicia sativa 25S-18S rDNA intergenic spacer (IGS) and the satellite repeat S12, thought to be related to the spacer sequence. The spacer was shown to contain three types of subrepeats (A, B, and C) with monomers of 173 bp (A), 10 bp (B), and 66 bp (C), separated by unique or partially duplicated sequences. Two spacer variants were detected in V. sativa that differed in length (2990 and 3168 bp) owing to an extra copy of the subrepeat A. The A subrepeats were also shown to be highly homologous to the satellite repeat S12, which is located in large clusters on chromosomes 4, 5, and 6, and is not associated with the rDNA loci. Sequencing of additional S12 clones retrieved from a shotgun genomic library allowed definition of three subfamilies of this repeat based on minor differences in their nucleotide sequences. Two of these subfamilies could be discriminated from the rest of the S12 sequences as well as from the IGS A subrepeats using specific oligonucleotide primers that labeled only a subset of the S12 loci when used in the primed in situ DNA labeling (PRINS) reaction on mitotic chromosomes. These experiments showed that, in spite of the high overall similarity of the IGS A subrepeats and the S12 satellite repeats, there are S12 subfamilies that are divergent from the common consensus and are present at only some of the chromosomes containing the S12 loci. Thus, the subfamilies may have evolved at these loci following the spreading of the A subrepeats from the IGS to genomic regions outside the rDNA clusters.Electronic Supplementary Material Supplementary material is available in the online version of this article at Accession numbers: GenBank AY234364–AY234374. The monomer sequences and additional information about the family of IGS-like repeat S12 will also appear in the PlantSat database (Macas et al. 2002, ) under Accession name Vicia_sativa_IGS-like  相似文献   

5.
Polanco C  González AI  Dover GA 《Genetics》2000,155(3):1221-1229
Detailed analysis of variation in intergenic spacer (IGS) and internal transcribed spacer (ITS) regions of rDNA drawn from natural populations of Drosophila melanogaster has revealed contrasting patterns of homogenization although both spacers are located in the same rDNA unit. On the basis of the role of IGS regions in X-Y chromosome pairing, we proposed a mechanism of single-strand exchanges at the IGS regions, which can explain the different evolutionary trajectories followed by the IGS and the ITS regions. Here, we provide data from the chromosomal distribution of selected IGS length variants, as well as the detailed internal structure of a large number of IGS regions obtained from specific X and Y chromosomes. The variability found in the different internal subrepeat regions of IGS regions isolated from X and Y chromosomes supports the proposed mechanism of genetic exchanges and suggests that only the "240" subrepeats are involved. The presence of a putative site for topoisomerase I at the 5' end of the 18S rRNA gene would allow for the exchange between X and Y chromosomes of some 240 subrepeats, the promoter, and the ETS region, leaving the rest of the rDNA unit to evolve along separate chromosomal lineages. The phenomenon of localized units (modules) of homogenization has implications for multigene family evolution in general.  相似文献   

6.
Jo SH  Park HM  Kim SM  Kim HH  Hur CG  Choi D 《Heredity》2011,106(5):876-885
Tandemly repeated DNAs, referred to as satellite DNAs, often occur in a genome in a genus-specific manner. However, the mechanisms for generation and evolution for these sequences are largely unknown because of the uncertain origins of the satellite DNAs. We found highly divergent genus-specific satellite DNAs that showed sequence similarity with genus-specific intergenic spacers (IGSs) in the family Solanaceae, which includes the genera Nicotiana, Solanum and Capsicum. The conserved position of the IGS between 25S and 18S rDNA facilitates comparison of IGS sequences across genera, even in the presence of very low sequence similarity. Sequence comparison of IGS may elucidate the procedure of the genesis of complex monomer units of the satellite DNAs. Within the IGS of Capsicum species, base substitutions and copy number variation of subrepeat monomers were causes of monomer divergence in IGS sequences. At the level of inter-generic IGS sequences of the family Solanaceae, however, genus-specific motif selection, motif shuffling between subrepeats and differential amplification among motifs were involved in formation of genus-specific IGS. Therefore, the genus-specific satellite DNAs in Solanaceae plants can be generated from differentially organized repeat monomers of the IGS rather than by accumulation of mutations from pre-existent satellite DNAs.  相似文献   

7.
rDNA序列中的ITS作为DNA barcoding广泛应用于真菌的系统发育与物种辅助鉴定,IGS被认为可以用于种内水平不同菌株的鉴别。食用菌中还没有完整的rDNA序列的报道。本研究采用二代和三代测序技术分别对金针菇单核菌株“6-3”进行测序,用二代测序的数据对三代测序组装得到的基因组序列进行修正,得到一个在基因完整性、连续性和准确性均较好的基因组序列,对比Fibroporia vaillantii rDNA序列,获得金针菇完整的rDNA序列。金针菇rDNA序列结构分析表明,它有8个rDNA转录单元,长度均为5 903bp,有9个基因间隔区,其长度有较大差异,3 909-4 566bp。rDNA转录单元中,各元件的序列长度分别为:18S rDNA 1 796bp、ITS1 234bp、5.8S rDNA 173bp、ITS2 291bp、28S rDNA 3 410bp。基因间间隔区中,IGS1 1 351-1 399bp、5S rDNA 124bp、IGS2 2 435-3 092bp。金针菇的5S、5.8S、18S、28S rDNA序列准确性得到转录组数据的验证,也得到系统发育分析结果的支持。多序列比对发现,不同拷贝的基因间间隔区序列(IGS1和IGS2)存在丰富的多态性,多态性来源于SNP、InDel和TRS(串联重复序列),而TRS来源于重复单元的类型和数量。9个基因间间隔区之间,IGS1只有少量的SNP和InDel,IGS2不仅有SNP和InDel,还有TRS。本研究结果提示,在应用IGS进行种内水平不同菌株之间的鉴别时,需要选取不同拷贝之间的保守IGS序列。  相似文献   

8.
根据ITS1-5.8S-ITS2区域的特异核酸序列变化,加特隐球酵母Cryptococcus gattii(≡新型隐球酵母加特变种Cryptococcu neoformans var.gattii)可分为6种基因型。本研究通过检测加特隐球酵母的IGS基因,发现其IGS序列有着更丰富的变异和信息位点。通过结合加特隐球酵母RAPD(随机扩增的多态性DNA)图谱比较研究,与IGS和ITS的序列分析结果大体一致,说明新近发现的加特隐球酵母ITS8型确实有别于以前报道过的其他加特隐球酵母ITS基因型。研究证明IGS1及IGS2基因片段分析可以作为加特隐球酵母基因分类鉴定中有效的辅助鉴别的分子生物学方法,联合多种基因分类鉴定的方法可以更有效地揭示新型隐球酵母加特变种种内不同基因亚型间的遗传进化关系。  相似文献   

9.
10.
Origin and rearrangement of ribosomal DNA repeats in natural allotetraploid Nicotiana tabacum are described. Comparative sequence analysis of the intergenic spacer (IGS) regions of Nicotiana tomentosiformis (the paternal diploid progenitor) and Nicotiana sylvestris (the maternal diploid progenitor) showed species-specific molecular features. These markers allowed us to trace the molecular evolution of parental rDNA in the allopolyploid genome of N. tabacum; at least the majority of tobacco rDNA repeats originated from N. tomentosiformis, which endured reconstruction of subrepeated regions in the IGS. We infer that after hybridization of the parental diploid species, rDNA with a longer IGS, donated by N. tomentosiformis, dominated over the rDNA with a shorter IGS from N. sylvestris; the latter was then eliminated from the allopolyploid genome. Thus, repeated sequences in allopolyploid genomes are targets for molecular rearrangement, demonstrating the dynamic nature of allopolyploid genomes.  相似文献   

11.
Rice (Oryza sativa ssp. japonica cv. Nipponbare) harbors a ribosomal RNA gene (rDNA) cluster in the nucleolar-organizing region at the telomeric end of the short arm of chromosome 9. We isolated and sequenced two genomic clones carrying rice rDNA fragments from this region. The rice rDNA repeat units could be classified into three types based on length, which ranged from 7,928 to 8,934 bp. This variation was due to polymorphism in the number of 254-bp subrepeats in the intergenic spacer (IGS). Polymerase chain reaction (PCR) analysis suggested that the rDNA units in rice vary widely in length and that the copy number of the subrepeats in the IGS ranges from 1 to 12 in the rice genome. PCR and Southern blot analyses showed that most rDNA units have three intact and one truncated copies of the subrepeats in the IGS, and distal (telomere-side) rDNA units have more subrepeats than do proximal (centromere-side) ones. Both genomic clones we studied contained rDNA-flanking DNA sequences of either telomeric repeats (5′-TTTAGGG-3′) or a chromosome-specific region, suggesting that they were derived from the distal or proximal end, respectively, of the rDNA cluster. A similarity search indicated that retrotransposons appeared more frequently in a 500-kb portion of the proximal rDNA-flanking region than in other subtelomeric regions or sequenced regions of the genome. This study reveals the repetitive nature of the telomeric end of the short arm of chromosome 9, which consists of telomeric repeats, an rDNA array, and a retrotransposon-rich chromosomal region.Sequence accession numbers in DDBJ assigned for OSJNOa063K24 and OSJNBb0013K10 are AP009051 and AP008245, respectively.  相似文献   

12.
Four different intergenic regions of mitochondrial DNA (mt-IGS), a fragment of the intergenic spacer (IGS) region of the rDNA (rDNA-IGS), and a fragment of the ras-related protein (Ypt1) gene were amplified and sequenced from a panel of 31 Phytophthora species representing the most significant forest pathogens and the breadth of diversity in the genus. Over 80 kbp of novel sequences were generated and alignments showed very variable (introns and non-coding regions) as well as conserved coding regions. The mitochondrial DNA regions had an AT/GC ratio ranging from 67.2 to 89.0% and were appropriate for diagnostic development and phylogeographic analysis. The IGS fragment was less variable but still appropriate to discriminate amongst some important forest pathogens. The introns of the Ypt1 gene were sufficiently polymorphic for the development of molecular markers for almost all Phytophthora species, with more conserved flanking coding regions appropriate for the design of Phytophthora genus-specific primers. In general, phylogenetic analysis of the sequence alignments grouped species in clades that matched those based on the ITS regions of the rDNA. In many cases the resolution was improved over ITS but in other cases sequences were too variable to align accurately and yielded phylograms inconsistent with other data. Key studies on the intraspecific variation and primer specificity remain. However the research has already yielded an enormous dataset for the identification, detection and study of the molecular evolution of Phytophthora species.  相似文献   

13.
DNA from the "non-transcribed spacer" (NTS) of two wheat ribosomal RNA gene (rDNA) clones was sequenced. The regions flanking the internal subrepeat arrays are highly conserved between the two clones; the nucleotide sequence differ by less than one-half percent. In contrast, the consensus sequences of the subrepeats in the two arrays differ by three percent. Mutations unique to each array, yet found in more than one subrepeat of the array, are preferentially found in adjacent and alternate subrepeats. The similarity of the DNA sequences of the flanking regions is consistent with a model of homogenization among rDNA gene units by intergenic conversion. We propose that a different mechanism, preferential conversion between neighboring subrepeats, is largely responsible for the homogenization of subrepeats within an array.  相似文献   

14.
15.
A R Ganley  B Scott 《Genetics》1998,150(4):1625-1637
An extraordinary level of length heterogeneity was found in the ribosomal DNA (rDNA) of an asexual hybrid Neotyphodium grass endophyte, isolate Lp1. This hybrid Neotyphodium endophyte is an interspecific hybrid between two grass endophytes, Neotyphodium lolii, and a sexual form, Epichlöe typhina, and the length heterogeneity was not found in either of these progenitor species. The length heterogeneity in the hybrid is localized to the intergenic spacer (IGS) and is the result of copy-number variation of a tandemly repeated subrepeat class within the IGS, the 111-/119-bp subrepeats. Copy number variation of this subrepeat class appears to be a consequence of mitotic unequal crossing over that occurs between these subrepeats. This implies that unequal crossing over plays a role in the concerted evolution of the whole rDNA. Changes in the pattern of IGS length variants occurred in just two rounds of single-spore purification. Analysis of the IGS length heterogeneity revealed features that are unexpected in a simple model of unequal crossing over. Potential refinements of the molecular details of unequal crossing over are presented, and we also discuss evidence for a combination of homogenization mechanisms that drive the concerted evolution of the Lp1 rDNA.  相似文献   

16.
17.
The primary structure of intergenic non-transcribed and external transcribed spacers of rDNA of diploid wheat Triticum urartu, cloned in pTu3 plasmid 2402 b.p. long was determined. The intergenic non-transcribed rDNA spacer of Tr. urartu was shown to consist of 8 subrepeats with an average of 133 b.p. long, heterogeneous in length and nucleotide sequence. A number of repeated sequences was revealed within each subrepeat. While comparing nucleotide sequences of rDNA subrepeats of Tr. urartu and Tr. aestivum a high homology was found (up to 82%). A high similarity between these plant species was also found in the promoter region and in the external transcribed rDNA spacer. Suppression of the nucleolar organizer of 1A chromosome in the presence of 1B and 6B chromosomes of Tr. aestivum is supposed to be connected with the existence of a great number of subrepeats in the intergenic non-transcribed rDNA spacer of B genome donors in polyploid wheat species of turgidum-aestivum row.  相似文献   

18.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

19.
The nrDNA ITS1 of Picea is 2747-3271 bp, the longest known of all plants. We obtained 24 cloned ITS1 sequences from six individuals of Picea glehnii, Picea mariana, Picea orientalis, and Picea rubens. Mean sequence divergence within these individuals (0.018+/-0.009) is more than half that between the species (0.031+/-0.011) and may be maintained against concerted evolution by separation of Picea 18S-26S rDNA repeats on multiple chromosomes. Picea ITS1 contains three subrepeats with a motif (5'-GGCCACCCTAGTC) that is conserved across Pinaceae. Two subrepeats are tandem, remote from the third, and more closely related and significantly more similar to one another than either is to the third subrepeat. This correlation between similarity and proximity may be the result of subrepeat duplication or concerted evolution within rDNA repeats. In inferred secondary structures, subrepeats generally form long hairpins, with a portion of the Pinaceae conserved motif in the terminal loop, and tandem subrepeats pair with one another over most of their length. Coalescence of ITS1 sequences occurs in P. orientalis but not in the other species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号