首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zak O  Aisen P 《Biochemistry》2002,41(5):1647-1653
Eukaryotic transferrins comprise a class of bilobal iron-binding proteins in which each lobe carries a single binding site. Although expression of full-length transferrins and their N-terminal lobes, in wild-type and mutated forms, has been successfully accomplished by several laboratories, expression of C-lobes has been much less satisfactory. A possible explanation of the difficulty is that proper folding of the C-lobe, with its 11 disulfide bonds, depends on prior synthesis and proper folding of the N-lobe. We have therefore developed a new strategy, introducing a specific factor Xa cleavage site in the interlobe-connecting strand to permit separation of the lobes after expression of the full-length protein. The resulting protein was expressed in satisfactory yield, >20 mg/L, and could be easily and completely cleaved to yield two distinguishable fragments representing N- and C-lobes, respectively. Retaining the glycosylation sites, found only in the C-lobe, made it possible to separate the fragments from each other by ConA affinity chromatography. The isolated C-lobe so obtained displayed spectroscopic and kinetic features of the C-lobe in native transferrin and was competent as an iron donor for K562 cells to which it bound in saturable fashion inhibitable by native diferric transferrin. Since the N-lobe by itself will neither bind nor donate iron to cells, the primary receptor-recognition site of transferrin resides in its C-lobe.  相似文献   

2.
The transferrins (TFs) are a family of proteins that are widely distributed in vertebrates, where they serve a major role in iron binding and transport. Most TFs are composed of two homologous lobes, the N- and C-lobes, each able to bind a single iron atom. Human serum transferrin (hTF) binds iron in the blood and delivers it to actively dividing cells; through the process of receptor-mediated endocytosis, diferric hTF in the serum (pH approximately 7.4) binds to specific TF receptors on the cell surface and is internalized, whereupon a pH drop in the endosome (pH approximately 5.6) facilitates iron release. Many factors affect the rate of iron release, including pH, chelator, temperature, salt, and lobe-lobe interactions. We, and others, have actively studied the mechanism of iron release from the recombinant N-lobe of hTF; in contrast, the exact details of iron release from the C-lobe have remained less well characterized but appear to differ from those found for the N-lobe. Recently, to simplify the purification protocol, we have expressed and purified full-length recombinant hTF containing an N-terminal hexahistidine tag [Mason et al. (2002) Biochemistry 41, 9448-9454]. In the present work, we have expressed a full-length recombinant hTF containing a K206E mutation such that the N-lobe does not readily release iron. The resulting full-length hTF allows us to focus on the C-lobe and to study the effects of mutations introduced into the C-lobe. The success of this strategy is documented and in vitro mutagenesis is used to identify three residues in the C-lobe that are critical for iron-release. Although the importance of this triad is unequivocally demonstrated, further studies are needed to completely elucidate the mechanism of iron release from the C-lobe of hTF. In addition, the striking difference in the effect of increasing salt concentrations on iron release from the two lobes of hTF is further documented in the present work.  相似文献   

3.
Each homologous lobe of human serum transferrin (hTF) has one Fe(3+) ion bound by an aspartic acid, a histidine, two tyrosine residues, and two oxygens from the synergistic anion, carbonate. Extensive characterization of these ligands in the N-terminal lobe has been carried out. Despite sharing the same set of ligands, there is a substantial amount of evidence that the N- and C-lobes are inequivalent. Studies of full-length hTF have shown that iron release from each lobe is kinetically distinguishable. To simplify the assessment of mutations in the C-lobe, we have created mutant hTF molecules in which the N-lobe binds iron with high affinity or not at all. Mutations targeting the C-lobe liganding residues have been introduced into these hTF constructs. UV-visible spectral, kinetic, and EPR studies have been undertaken to assess the effects of each mutation and to allow direct comparison to the N-lobe. As found for the N-lobe, the presence of Y517 in the C-lobe (equivalent to Y188 in the N-lobe) is absolutely essential for the binding of iron. Unlike the N-lobe, however, mutation of Y426 (equivalent to Y95) does not produce a stable complex with iron. For the mutants that retain the ability to bind iron (D392S and H585A), the rates of release are considerably slower than those measured for equivalent mutations in the N-lobe at both pH 7.4 and pH 5.6. Equilibrium binding experiments with HeLa S(3) cells indicate that recombinant hTF, in which Y426 or H585 is mutated, favor a closed or nearly closed conformation while those with mutations of the D392 or Y517 ligands appear to promote an open conformation. The differences in the effects of mutating the liganding residues in the two lobes and the subtle indications of cooperativity between lobes point to the importance of the transferrin receptor in effecting iron release from the C-lobe. Significantly, the equilibrium binding experiments also indicate that, regardless of which lobe contains the iron, the free energy of binding is equivalent and not additive; each monoferric hTF has a free energy of binding that is 82% of diferric hTF.  相似文献   

4.
The transferrins (TF) are a family of bilobal glycoproteins that tightly bind ferric iron. Each of the homologous N- and C-lobes contains a single iron-binding site situated in a deep cleft. Human serum transferrin (hTF) serves as the iron transport protein in the blood; circulating transferrin binds to receptors on the cell surface, and the complex is internalized by endocytosis. Within the cell, a reduction in pH leads to iron release from hTF in a receptor-dependent process resulting in a large conformational change in each lobe. In the hTF N-lobe, two critical lysines facilitate this pH-dependent conformational change allowing entry of a chelator to capture the iron. In the C-lobe, the lysine pair is replaced by a triad of residues: Lys534, Arg632, and Asp634. Previous studies show that mutation of any of these triad residues to alanine results in significant retardation of iron release at both pH 7.4 and pH 5.6. In the present work, the role of the three residues is probed further by conversion to the residues observed at the equivalent positions in ovotransferrin (Q-K-L) and human lactoferrin (K-N-N) as well as a triad with an interchanged lysine and arginine (K534R/R632K). As expected, all of the constructs bind iron and associate with the receptor with nearly the same K(D) as the wild-type monoferric hTF control. However, interesting differences in the effect of the substitutions on the iron release rate in the presence and absence of the receptor at pH 5.6 are observed. Additionally, titration with KCl indicates that position 632 must have a positively charged residue to elicit a robust rate acceleration as a function of increasing salt. On the basis of these observations, a model for iron release from the hTF C-lobe is proposed. These studies provide insight into the importance of charge and geometry of the amino acids at these positions as a partial explanation for differences in behavior of individual TF family members, human serum transferrin, ovotransferrin, and lactoferrin. The studies collectively highlight important features common to both the N- and C-lobes of TF and the critical role of the receptor in iron release.  相似文献   

5.
The transferrin family spans both vertebrates and invertebrates. It includes serum transferrin, ovotransferrin, lactoferrin, melanotransferrin, inhibitor of carbonic anhydrase, saxiphilin, the major yolk protein in sea urchins, the crayfish protein, pacifastin, and a protein from green algae. Most (but not all) contain two domains of around 340 residues, thought to have evolved from an ancient duplication event. For serum transferrin, ovotransferrin and lactoferrin each of the duplicated lobes binds one atom of Fe (III) and one carbonate anion. With a few notable exceptions each iron atom is coordinated to four conserved amino acid residues: an aspartic acid, two tyrosines, and a histidine, while anion binding is associated with an arginine and a threonine in close proximity. These six residues in each lobe were examined for their evolutionary conservation in the homologous N- and C-lobes of 82 complete transferrin sequences from 61 different species. Of the ligands in the N-lobe, the histidine ligand shows the most variability in sequence. Also, of note, four of the twelve insect transferrins have glutamic acid substituted for aspartic acid in the N-lobe (as seen in the bacterial ferric binding proteins). In addition, there is a wide spread substitution of lysine for the anion binding arginine in the N-lobe in many organisms including all of the fish, the sea squirt and many of the unusual family members i.e., saxiphilin and the green alga protein. It is hoped that this short analysis will provide the impetus to establish the true function of some of the TF family members that clearly lack the ability to bind iron in one or both lobes and additionally clarify the evolutionary history of this important family of proteins.  相似文献   

6.
Lactoferrin and Iron: structural and dynamic aspects of binding and release   总被引:1,自引:1,他引:0  
Lactoferrin (Lf) has long been recognized as a member of the transferrin family of proteins and an important regulator of the levels of free iron in the body fluids of mammals. Its ability to bind ferric iron with high affinity (KD approximately 10(-20) M) and to retain it to low pH gives the protein bacteriostatic and antioxidant properties. This ability can be well understood in terms of its three dimensional (3D) structure. The molecule is folded into two homologous lobes (N- and C-lobes) with each lobe binding a single Fe3+ ion in a deep cleft between two domains. The iron sites are highly conserved, and highly favorable for iron binding. Iron binding and release are associated with large conformational changes in which the protein adopts either open or closed states. Comparison of available apolactoferrin structures suggests that iron binding is dependent on the dynamics of the open state. What triggers release of the tightly bound iron, however, and why lactoferrin retains iron to much lower pH than its serum homologue, transferrin, has been the subject of much speculation. Comparisons of structural and functional data on lactoferrins and transferrins now suggest that the key factor comes from cooperative interactions between the two lobes of the molecule, mediated by two alpha-helices.  相似文献   

7.
The iron binding and release of serum transferrin are pH-dependent and accompanied by a conformational change between the iron-bound (holo-) and iron-free (apo-) forms. We have determined the crystal structure of apo-hen serum transferrin (hAST) at 3.5A resolution, which is the first reported structure to date of any full molecule of an apo-serum transferrin and studied its pH-dependent iron release by UV-vis absorption and near UV-CD spectroscopy. The crystal structure of hAST shows that both the lobes adopt an open conformation and the relative orientations of the domains are different from those of apo-human serum transferrin and human apolactoferrin but similar to that of hen apo-ovotransferrin. Spectroscopic analysis reveals that in hen serum transferrin, release of the first iron starts at a pH approximately 6.5 and continues over a broad pH range (6.5-5.2). The complete release of the iron, however, occurs at pH approximately 4.0. The near UV-CD spectra show alterations in the microenvironment of the aromatic residues surrounding the iron-binding sites.  相似文献   

8.
Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway--receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu(C)Fe(N)Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.  相似文献   

9.
The Protein Journal - C-lobe represents the C-terminal half of lactoferrin which is a bilobal 80 kDa iron binding glycoprotein. The two lobes are designated as N-lobe (Ser1-Glu333) and...  相似文献   

10.
The nucleotide sequence of rabbit liver transferrin cDNA   总被引:4,自引:0,他引:4  
The cDNA sequence of rabbit liver transferrin has been determined. The largest cDNA was 2279 base pairs (bp) in size and encoded 694 amino acids consisting of a putative 19 amino acid signal peptide and 675 amino acids of plasma transferrin. The deduced amino acid sequence of rabbit liver transferrin shares 78.5% identity with human liver transferrin and 69.1% and 44.8% identity with porcine and Xenopus transferrins, respectively. At the amino acid level, vertebrate transferrins share 26.4% identity and 56.5% similarity. The most conserved regions correspond to the iron ligands and the anion binding region. Optimal alignment of transferrin sequences required the insertion of a number of gaps in the region corresponding to the N-lobe. In addition, the N-lobes of transferrins share less amino acid sequence similarity than the C-lobes.  相似文献   

11.
Human serum transferrin is an essential bilobal protein that transports iron in the circulation for delivery to iron-requiring cells. Obtaining the C-terminal lobe of human transferrin in verified native conformation has been problematic, possibly because its 11 disulfide bonds lead to misfolding when the lobe is expressed without its accompanying N-lobe. A recently reported method for preparing the C-lobe free of extraneous residues, with normal iron-binding properties and capable of delivering iron to cells, makes use of a Factor Xa cleavage site inserted into the interlobal connecting strand of the full-length protein. An inefficient step in this method requires the use of ConA chromatography to separate the cleaved lobes from each other, since only the C-lobe is glycosylated. Inserting a 6-His sequence near the start of the N-lobe enhances recovery of the recombinant transferrin from other proteins in the culture medium of the BHK21 cells expressing the mutant transferrin. The new procedure is more economical in time and effort than its predecessor, and offers the additional advantage of isolating C-lobe expressed with or without its glycan chains.  相似文献   

12.
Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependent process. The binding and release of iron result in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF), which was independently determined by two methods: 1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7-A resolution using a multiple wavelength anomalous dispersion phasing strategy, by substituting the nine methionines in hTF with selenomethionine and 2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7A by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human transferrin and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4 degrees and 49.5 degrees rotations are required to open the N- and C-lobes, respectively (compared with closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor.  相似文献   

13.
Transferrin (Tf) is an iron carrier protein that consists of two lobes, the N- and C-lobes, which can each bind a Fe3+ ion. Tf binds to its receptor (TfR), which mediates iron delivery to cells through an endocytotic pathway. Receptor binding facilitates iron release from the Tf C-lobe, but impedes iron release from the N-lobe. An atomic model of the Tf-TfR complex based on single particle electron microscopy (EM) indicated that receptor binding is indeed likely to hinder opening of the N-lobe, thus interfering with its iron release. The atomic model also suggested that the TfR stalks could form additional contacts with the Tf N-lobes, thus potentially further slowing down its iron release. Here, we show that the TfR stalks are unlikely to make strong interactions with the Tf N-lobes and that the stalks have no effect on iron release from the N-lobes of receptor-bound Tf.  相似文献   

14.
Baker HM  Mason AB  He QY  MacGillivray RT  Baker EN 《Biochemistry》2001,40(39):11670-11675
Proteins of the transferrin (Tf) family play a central role in iron homeostasis in vertebrates. In vertebrate Tfs, the four iron-binding ligands, 1 Asp, 2 Tyr, and 1 His, are invariant in both lobes of these bilobal proteins. In contrast, there are striking variations in the Tfs that have been characterized from insect species; in three of them, sequence changes in the C-lobe binding site render it nonfunctional, and in all of them the His ligand in the N-lobe site is changed to Gln. Surprisingly, mutagenesis of the histidine ligand, His249, to glutamine in the N-lobe half-molecule of human Tf (hTf/2N) shows that iron binding is destabilized and suggests that Gln249 does not bind to iron. We have determined the crystal structure of the H249Q mutant of hTf/2N and refined it at 1.85 A resolution (R = 0.221, R(free) = 0.246). The structure reveals that Gln249 does coordinate to iron, albeit with a lengthened Fe-Oepsilon1 bond of 2.34 A. In every other respect, the protein structure is unchanged from wild-type. Examination of insect Tf sequences shows that the K206.K296 dilysine pair, which aids iron release from the N-lobes of vertebrate Tfs, is not present in the insect proteins. We conclude that substitution of Gln for His does destabilize iron binding, but in the insect Tfs this is compensated by the loss of the dilysine interaction. The combination of a His ligand with the dilysine pair in vertebrate Tfs may have been a later evolutionary development that gives more sophisticated pH-mediated control of iron release from the N-lobe of transferrins.  相似文献   

15.
We report the determination in cell-free assays of the mechanism of iron release from the N-lobe and C-lobe of human serum transferrin in interaction with intact transferrin receptor 1 at 4.3< or =pH< or =6.5. Iron is first released from the N-lobe in the tens of milliseconds range and then from the C-lobe in the hundreds of seconds range. In both cases, iron loss is rate-controlled by slow proton transfers, rate constant for the N-lobe k(1)=1.20(+/-0.05)x10(6)M(-1)s(-1) and for the C-lobe k(2)=1.6(+/-0.1)x10(3)M(-1)s(-1). This iron loss is subsequent to a fast proton-driven decarbonation and is followed by two proton gains, (pK(1a))/2=5.28 per proton for the N-lobe and (pK(2a))/2=5.10 per proton for the C-lobe. Under similar experimental conditions, iron loss is about 17-fold faster from the N-lobe and is at least 200-fold faster from the C-lobe when compared to holotransferrin in the absence of receptor 1. After iron release, the apotransferrin-receptor adduct undergoes a slow partial dissociation controlled by a change in the conformation of the receptor; rate constant k(3)=1.7(+/-0.1)x10(-3)s(-1). At endosomic pH, the final equilibrated state is attained in about 1000 s, after which the free apotransferrin, two prototropic species of the acidic form of the receptor and apotransferrin interacting with the receptor coexist simultaneously. However, since recycling of the vesicle containing the receptor to the cell surface takes a few minutes, the major part of transferrin will still be forwarded to the biological fluid in the form of the apotransferrin-receptor protein-protein adduct.  相似文献   

16.
Gumerov DR  Mason AB  Kaltashov IA 《Biochemistry》2003,42(18):5421-5428
Human serum transferrin (hTF) is an iron transport protein, comprising two lobes (N and C), each containing a single metal-binding center. Despite substantial structural similarity between the two lobes, studies have demonstrated the existence of significant differences in their metal-binding properties. The nature of these differences has been elucidated through the use of electrospray ionization mass spectrometry to study both metal retention and conformational properties of hTF under a variety of conditions. In the absence of chelating agents or nonsynergistic anions, the diferric form of hTF remains intact until the pH is lowered to 4.5. The monoferric form of hTF retains the compact conformation until the pH is lowered to 4.0, whereas the apoprotein becomes partially unfolded at pH as high as 5.5. Selective (lobe-specific) modulation of the iron-binding properties of hTF using recombinant forms of the protein (in which the pH-sensitive elements in each lobe were mutated) verifies that the N-lobe of the protein has a lower affinity for ferric ion. Surprisingly, the apo-N-lobe is significantly less flexible compared to the apo-C-lobe. Furthermore, the conformation of the iron-free N-lobe is stabilized when the C-lobe contains iron, confirming the existence of an interlobe interaction within the protein. The experimental results provide strong support for the earlier suggestion that hTF interacts with its receptor (TFR) primarily through the C-lobe both at the cell surface and inside the endosome.  相似文献   

17.
Transferrins are a group of iron-binding proteins that control the levels of iron in the body fluids of vertebrates by their ability to bind two Fe3+ and two CO3(2-). The transferrin molecule, with a molecular mass of about 80 kDa, is folded into two similarly sized homologous N- and C-lobes that are stabilized by many intrachain disulfides. As observed by X-ray crystallography, each lobe is further divided into two similarly sized domains, domain 1 and domain 2, and an Fe3+-binding site is within the interdomain cleft. Four of the six Fe3+ coordination sites are occupied by protein ligands (2 Tyr residues, 1 Asp, and 1 His) and the other two by a bidentate CO3(2-). Upon uptake and release of Fe3+, transferrins undergo a large-scale conformational change depending on a common structural mechanism: domains 1 and 2 rotate as rigid bodies around a rotation axis that passes through the two antiparallel beta-strands linking the domains. The extent of the rotation is, however, variable for different transferrin species and lobes. As a Fe3+ release mechanisms at low pH from the N-lobes of serum transferrin and ovotransferrin, the structural evidence for 'dilysine trigger mechanism' is shown. A structural mechanism for the Fe3+ release in presence of a non-synergistic anion is proposed on the basis of the sulfate-bound apo crystal structure of the ovotransferrin N-lobe. Domain-opened structures with the coordinated Fe3+ by the two tyrosine residues are demonstrated in fragment and intact forms, and their functional implications as a possible intermediate for iron uptake and release are discussed.  相似文献   

18.
This is the first protein intermediate obtained in the crystalline state by the simultaneous process of Fe(3+) binding and crystal nucleation and is also the first structure of an intermediate of lactoferrin in the Fe(3+) binding pathway. Lactoferrin is an iron-binding 80-kDa glycoprotein. It binds Fe(3+) very tightly in a closed interdomain cleft in both lobes. The iron-free structure of lactoferrin, on the other hand, adopts an open conformation with domains moving widely apart. These studies imply that initial Fe(3+) binding must be in the open form. The protein intermediate was crystallized by the microdialysis method. The protein solution, with a concentration of 100 mg/ml in 10 mm Tris-HCl, pH 8.0, was loaded in a capillary and dialyzed against the same buffer containing 26% (v/v) ethanol placed in a reservoir. FeCl(3) and CO(3)(2-) in excess molar ratios to that of protein in its solution were added to the reservoir buffer. The crystals appeared after some hours and grew to the optimum size within 36 h. The structure was determined by molecular replacement method and refined to final R- and R-free factors of 0.187 and 0.255, respectively. The present structure showed that the protein molecule adopts an open conformation similar to that of camel apolactoferrin. The electron density map clearly indicated the presence of two iron atoms, one in each lobe with 4-fold coordinations: two by the protein ligands of Tyr-92(433) OH and Tyr-192(526) OH and two other coordination sites occupied by oxygen atoms of bidentate CO(3)(2-) ions leading to a tetrahedral intermediate. The CO(3)(2-) anion is stabilized through hydrogen bonds with the synergistic anion-binding site Arg-121(463) and with Ser-122 Ogamma in the N-lobe and Thr-464 Ogamma in C-lobe. The third oxygen atom of CO(3)(2-) interacts with a water molecule in both lobes.  相似文献   

19.
Three COX-2-specific non-steroidal anti-inflammatory drugs (NSAIDs), etoricoxib, parecoxib, and nimesulide are widely prescribed against inflammatory conditions. However, their long term administration leads to severe conditions of cardiovascular complications and gastric ulceration. In order to minimize these side effects, C-terminal half (C-lobe) of colostrum protein lactoferrin has been indicated to be useful if co-administered with NSAIDs. Lactoferrin is an 80 kDa glycoprotein with two similar halves designated as N- and C-lobes. Since NSAID-binding site is located in the C-terminal half of lactoferrin, C-lobe was prepared from lactoferrin by limited proteolysis using proteinase K. The incubation of lactoferrin with serine proteases for extended periods showed that N-lobe was completely digested but C-lobe was resistant for more than 72 h indicating its long half life in the animal gut. The solution studies have shown that COX-2-specific NSAIDs bind to C-lobe with binding constants ranging from 10−4 to 10−5 M showing significant affinities for sequestering these compounds. In order to understand the mode of binding and sequestering properties, the complexes of C-lobe with all these three compounds, etoricoxib, parecoxib, and nimesulide were prepared and the structures of their complexes with C-lobe were determined at 2.2, 2.9, and 2.7 ? resolutions, respectively. The analysis of the structures of complexes of C-lobe with NSAIDs clearly show that all the three compounds bind firmly at the same ligand-binding site in the C-lobe revealing the details of the interactions between C-lobe and NSAIDs. The mode of binding of COX-2-specific NSAIDs to C-lobe is similar to that of the binding of COX-2 non-specific NSAIDs to C-lobe.  相似文献   

20.
We isolated transferrin cDNA from tobacco cutworm (Spodoptera litura) and refer to it as SlTf (Spodoptera litura transferrin). The 2,237-bp SlTf cDNA encoded 685 amino acids, with a predicted Mw of 76.3 kDa and an isoelectric point of pH 7.97. The amino acid sequence of the SlTf protein had 11?C81% similarity with those of other reported animal transferrins, showing the highest similarity with another Lepidopteran insect, the silkworm (Bombyx mori), and the lowest similarity with atlantic cod (Gadus morhua) serum transferrin. Phylogenetic tree analysis showed that SlTf was close to transferrins of B. mori and M. sexta. By urea-polyacrylamide gel electrophoresis, four different iron-bound forms (apo-, C-terminal monoferric, N-terminal monoferric and diferric) were found from both SlTf and human transferrin, suggesting the C-lobe iron-binding motif of SlTf possesses the iron-biding activity, although its amino acid sequence is not well conserved compare to that of vertebrate transferrins. Accordingly, we suggest that the amino acid residues of iron-binding sites in SlTf are different from those of human serum transferrin, however the iron-binding capacity is conserved in both the C-lobe and the N-lobe of SlTf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号