首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A Gram-positive, rod-shaped, motile and spore-forming bacterium, designated ZLD-8T, was isolated from a desert soil sample collected from Xinjiang Province in north-west China, and subjected to a polyphasic taxonomic analysis. This isolate grew optimally at 30°C and pH 7.0. It grew with 0–4% NaCl (optimum, 0–1%). Comparative 16S rRNA gene sequence analysis showed that strain ZLD-8T was closely related to members of the genus Bacillus, exhibiting the highest 16S rRNA gene sequence similarity to Bacillus kribbensis DSM 17871T (98.0%). The levels of 16S rRNA gene sequence similarity with respect to other Bacillus species with validly published names were less than 96.3%. The DNA G + C content of strain ZLD-8T was 40.1 mol%. The strain contained MK-7 as the predominant menaquinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5% of total fatty acids) were anteiso-C15:0 (39.56%), iso-C14:0 (25.69%), C16:1 ω7c alcohol (10.13%) and iso-C15:0 (5.27%). These chemotaxonomic results supported the affiliation of strain ZLD-8T to the genus Bacillus. However, low DNA–DNA relatedness values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain ZLD-8T from recognized Bacillus species. On the basis of the polyphasic evidence presented, strain ZLD-8T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus deserti sp. nov. is proposed. The type strain is ZLD-8T (=CCTCC AB 207173T = KCTC 13246T).  相似文献   

2.
Aim:  To investigate the applicability of rpoB gene, which encodes the β subunit of RNA polymerase, to be used as an alternative to 16S rRNA for sequence similarity analysis in the thermophilic genus Geobacillus. Rapid and reproducible repetitive extragenic palindromic fingerprinting techniques (REP‐ and BOX‐polymerase chain reaction) were also used. Methods and Results:  rpoB DNA (458 bp) were amplified from 21 Geobacillus‐ and Bacillus type strains, producing different BOX‐ and REP‐PCR profiles, in addition to 11 thermophilic isolates of Geobacillus and Bacillus species from a Santorini volcano habitat. The sequences and the phylogenetic tree of rpoB were compared with those obtained from 16S rRNA gene analysis. The results demonstrated between 90–100% (16S rRNA) and 74–100% (rpoB) similarity among examined bacteria. Conclusion:  BOX‐ and REP‐PCR can be applied for molecular typing within Geobacillus genus. rpoB sequence similarity analysis permits a more accurate discrimination of the species within the Geobacillus genus than the more commonly used 16S rRNA. Significance and Impact of the Study:  The obtained results suggested that rpoB sequence similarity analysis is a powerful tool for discrimination between species within the ecologically and industrially important strains of Geobacillus genus.  相似文献   

3.
A Gram-positive, non-pigmented, rod-shaped, diazotrophic bacterial strain, designated SC-N012T, was isolated from rhizosphere soil of sugarcane and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Sequence analysis of the 16S rRNA gene of SC-N012T revealed the closest match (98.9% pair wise similarity) with Bacillus clausii DSM 8716T. However, DNA–DNA hybridization experiments indicated low levels of genomic relatedness (32%) with this strain. The major components of the fatty acid profile are iso-C15:0, anteiso-C15:0, iso-C17:0 and anteiso-C17:0. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. The G+C content of the genomic DNA is 43.0 mol%. The lipids present in strain SC-N012T are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and two unknown phospholipids. Their predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing allowed strain SC-N012T to be described as members of novel species of the genus Bacillus, for which the name Bacillus rhizosphaerae sp. nov. is proposed. The type strain is SC-N012T (=DSM 21911T = NCCB 100267T).  相似文献   

4.
A Gram-positive, rod-shaped, motile, endospore-forming bacterial strain, designated NB22T, was isolated from soil of a lettuce field in Kyonggi province, South Korea, and was characterized by using a polyphasic taxonomic approach. This novel isolate grew optimally at 30–37°C and pH 8–9. It grew in the presence of 0–4% NaCl (optimum, 1–2%). Comparative 16S rRNA gene sequence analysis showed that strain NB22T was closely related to members of the genus Bacillus and fell within a coherent cluster comprising B. siralis 171544T (98.1%) and B. korlensis ZLC-26T (97.3%). The levels of 16S rRNA gene sequence similarity with respect to other Bacillus species with validly published names were less than 96.4%. Strain NB22T had a genomic DNA G+C content of 36.3 mol% and the predominant respiratory quinone was MK-7. The peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, C14:0, and C16:0. These chemotaxonomic results supported the affiliation of strain NB22T to the genus Bacillus, and the low DNA-DNA relatedness values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain NB22T from recognized Bacillus species. On the basis of the evidence presented, strain NB22T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus kyonggiensis sp. nov. is proposed. The type strain is NB22T (=KEMB 5401-267T =JCM 17569T).  相似文献   

5.

Background  

The phylogeny of the genus Methanobrevibacter was established almost 25 years ago on the basis of the similarities of the 16S rRNA oligonucleotide catalogs. Since then, many 16S rRNA gene sequences of newly isolated strains or clones representing the genus Methanobrevibacter have been deposited. We tried to reorganize the 16S rRNA gene sequences of this genus and revise the taxonomic affiliation of the isolates and clones representing the genus Methanobrevibacter.  相似文献   

6.
A marine bacterium designated strain IMCC4074T was isolated from surface seawater collected off Incheon Port, the Yellow Sea, and subjected to a polyphasic taxonomy. The strain was Gram-negative, chemoheterotrophic, slightly halophilic, strictly aerobic, and motile rods. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Marinobacterium litorale KCTC 12756T (93.9%) and shared low 16S rRNA gene sequence similarities with members of the genus Marinobacterium (91.8–93.9%) and the genus Neptunomonas (93.4%) in the order Oceanospirillales. Phylogenetic analyses showed that this marine isolate formed an independent phyletic line within the genus Marinobacterium clade. The DNA G+C composition of the strain was 56.0 mol% and the predominant constituents of the cellular fatty acids were C16:0 (28.0%), C16:1 ω7c and/or iso-C15:0 2-OH (19.3%), C18:1 ω7c (17.8%), and C17:1 cyclo (12.5%), which differentiated the strain from other Marinobacterium species. Based on the taxonomic data collected in this study, only a distant relationship could be found between strain IMCC4074T and other members of the genus Marinobacterium, thus the strain represents a novel species of the genus Marinobacterium, for which the name Marinobacterium marisflavi sp. nov. is proposed. The type strain of Marinobacterium marisflavi is IMCC4074T (= KCTC 12757T = LMG 23873T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain IMCC4074T is EF468717. An erratum to this article can be found at  相似文献   

7.
The aim of this study was to evaluate the inter-and intraspecific as well as intragenomic variability of Geobacillus 16S–23S rRNA internal transcribed spacers without tRNA genes and to compare these sequences with sequences bearing tRNA genes. In this study the structural analysis was performed in a unique way because the length and the sequence of the structural blocks were adjusted to fit the structure of 16S–23S rRNA internal transcribed spacers of five different Geobacillus species. Our study demonstrated the mosaic-like structure of 16S–23S rRNA internal transcribed spacers in Geobacillus. Some characteristics of these spacers of geobacilli were not previously reported for other bacteria: unusually short conserved sequence in the 5′ end region, some identical conserved blocks in both 5′ and 3′ regions of 16S–23S rRNA internal transcribed spacers, the same sequence blocks in both 16S–23S and 23S–5S rRNA intergenic spacers. Our study demonstrated quite uniform arrangement of the sequence blocks in Geobacillus thermodenitrificans. This species diverged early in the phylogenetic tree of the genus Geobacillus. For the phylogenetically recent species Geobacillus kaustophilus and Geobacillus lituanicus the low inter-and intraspecific, but high intragenomic variability, as a consequence of recent phylogenetic events, was established.  相似文献   

8.
The primary structures of the genes encoding the β-subunits of a type II topoisomerase (gyrase, gyrB) and a type IV topoisomerase (parE) were determined for 15 strains of thermophilic bacteria of the genus Geobacillus. The obtained sequences were used for analysis of the phylogenetic similarity between members of this genus. Comparison of the phylogenetic trees of geobacilli constructed on the basis of the 16S rRNA, gyrB, and parE gene sequences demonstrated that the level of genetic distance between the sequences of the genes encoding the β-subunits of type II topoisomerases significantly exceeded the values obtained by comparative analysis of the 16S rRNA gene sequences of Geobacillus strains. It was shown that, unlike the 16S rRNA gene analysis, comparative analysis of the gyrB and parE gene sequences provided a more precise determination of the phylogenetic position of bacteria at the species level. The data obtained suggest the possibility of using the genes encoding the β-subunits of type II topoisomerases as phylogenetic markers for determination of the species structure of geobacilli.  相似文献   

9.
The present study was conducted to identify and characterize the thermophilic bacteria isolated from various hot springs in Turkey by using phenotypic and genotypic methods including fatty acid methyl ester and rep-PCR profilings, and 16S rRNA sequencing. The data of fatty acid analysis showed the presence of 17 different fatty acids in 15 bacterial strains examined in this study. Six fatty acids, 15:0 iso, 15:0 anteiso, 16:0, 16:0 iso, 17:0 iso, and 17:0 anteiso, were present in all strains. The bacterial strains were classified into three phenotypic groups based on fatty acid profiles which were confirmed by genotypic methods such as 16S rRNA sequence analysis and rep-PCR genomic fingerprint profiles. After evaluating several primer sets targeting the repetitive DNA elements of REP, ERIC, BOX and (GTG)5, the (GTG)5 and BOXA1R primers were found to be the most reliable technique for identification and taxonomic characterization of thermophilic bacteria in the genera of Geobacillus, Anoxybacillus and Bacillus spp. Therefore, rep-PCR fingerprinting using the (GTG)5 and BOXA1R primers can be considered as a promising genotypic tool for the identification and characterization of thermophilic bacteria from species to strain level.  相似文献   

10.
Polyphasic taxonomic analysis was carried out for Bacillus sp. strain C6, as the antagonist of phytopathogenic bacteria and micromycetes. The combination of cultural, morphological, physiological, and biochemical properties of the strain has enabled researchers to refer it to the Bacillus subtilis group. It has been shown that the fatty acids of the strain’s cell walls were predominantly represented by branched iso- and anteiso-C15:0 and C17:0 fatty acids (over 85%), which was typical for the Bacillus amyloliquefaciens species. The molecular genetic analysis carried out on the nucleotide sequence of the 16S rRNA gene, and the profiling of polymorphic nucleotides have enabled researchers to refer the strain in question to Bacillus amyloliquefaciens subsp. plantarum.  相似文献   

11.
A novel Gram-negative, slightly halophilic, catalase- and oxidase-positive, obligately aerobic bacterium, strain YIM-C248T, was isolated from a sediment sample collected from a salt-lake in the Qaidam Basin in Qinghai, north-west China. Cells were non-sporulating short rods, occurring singly or as doublets, motile with peritrichous flagella. Growth occurred with 1–15% (w/v) NaCl [optimum 2–4% (w/v) NaCl], at pH 6.0–10.0 (optimum pH 7.5) and at 4–35°C (optimum 25–30°C). The major cellular fatty acids were C18:1 ω7c, C12:0 3-OH, cyclo C19:0 ω8c, C16:0 and C16:1. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM-C248T should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range of 92.5–97.5%. The combination of phylogenetic analysis, DNA–DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain YIM-C248T represents a new species of the genus Halomonas, for which the name Halomonas sediminis sp. nov. is proposed, with YIM-C248T (=CCTCC AA 207031 = KCTC 22167) as the type strain. The GenBank/EMBL/DBBJ accession number for the 16S rRNA gene sequence of strain YIM-C248T is EU135707.  相似文献   

12.
A bacterial strain, designated KMM 6244T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile and spore-forming. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bacillus. The nearest neighbor of strain KMM 6244T was Bacillus decolorationis LMG 19507T with a 16S rRNA gene sequence similarity of 98.0%. Sequence similarities with the other recognized Bacillus species were less than 96.0%. The results of the DNA–DNA hybridization experiments revealed a low relatedness (37%) of the novel isolate with the type strain of B. decolorationis LMG 19507T. Strain KMM 6244T grew at 4–45°C and with 0–12% NaCl. It produced catalase and oxidase and hydrolyzed aesculin, casein, gelatin and DNA. The predominant fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and iso-C14:0. The DNA G + C content was 39.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6244T represents a novel species in the genus Bacillus, for which the name Bacillus berkeleyi sp. nov. is proposed. The type strain is KMM 6244T (KCTC 12718T = LMG 26357T).  相似文献   

13.
Hao Z  Cai Y  Liao X  Liang X  Liu J  Fang Z  Hu M  Zhang D 《Current microbiology》2011,62(6):1732-1738
A novel aerobic mesophilic bacterial strain SYBC-H1T capable of degrading chitin was isolated and classified in this study. The strain exhibited strong chitinolytic activity and was a Gram-negative, curved, rod-shaped, and motile bacterium. Growth of this strain was observed between 10 and 41°C and between pH 3.5 and 9.5. The DNA G + C content of strain SYBC-H1T was 53.25 mol%. The cellular fatty acids (>5%) were 12:0 iso 3-OH (5.87%), 16:0 (28.16%), and 18:1ω7c (20.48%). Phylogenetic analysis based on 16S rRNA gene sequence similarity revealed that strain SYBC-H1T belonged to the family Neisseriaceae, and was distantly related (95.0% similarity) to the genus Chitiniphilus. Its phenotype was unique and genetic and phylogenetic analysis experiments suggested that strain SYBC-H1T represented the type strain (CGMCC 3438T, ATCC BAA-2140T) of a novel genus, for which the name Chitinolyticbacter meiyuanensis SYBC-H1T gen. nov., sp. nov. was proposed. The highest enzymatic activity of chitinase (9.6 U/ml) was obtained at 72 h in 250 ml shake flasks. The 16S rRNA gene sequence of SYBC-H1T has been deposited in GenBank under the accession number GQ981314.  相似文献   

14.
A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15T, was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl cellulose and galactomannan. The strain grew at salinities ranging from 2 to 22% NaCl (w/v). Optimal growth occurred in the presence of 7–11% NaCl (w/v) at a temperature of 35°C and a pH of 6.7–8.2. Major whole-cell fatty acids were C16:0 (30.5%), C18:0 (14.8%), C18:1ω7c (13.1%) and C12:0 (7.8%). The G+C content of the DNA was 60 ± 0.5 mol%. By 16S rRNA gene sequence analysis, strain SX15T was shown to be affiliated to members of the gammaproteobacterial genus Marinimicrobium with pair wise identity values of 92.9–94.6%. The pheno- and genotypic properties suggest that strain SX15T represents a novel species of the genus Marinimicrobium for which the name Marinimicrobium haloxylanilyticum is proposed. The type strain is SX15T (= DSM 23100T = CCUG 59572T).  相似文献   

15.
A novel pink-coloured, non-spore-forming, non-motile, Gram-negative bacterium, designated YIM 48858T, is described by using a polyphasic approach. The strain can grow at pH 6.5–9 (optimum at pH 7) and 25–30°C (optimum at 28°C). NaCl is not required for its growth. Positive for oxidase and catalase. Urease activity, nitrate reduction, starch and Tween 80 tests are negative reaction. 16S rRNA gene sequence similarity studies showed that strain YIM 48858T is a member of the genus Rubellimicrobium, with similarities of 96.3, 95.7 and 95.5% to Rubellimicrobium mesophilum MSL-20T, Rubellimicrobium aerolatum 5715S-9T and Rubellimicrobium thermophilum DSM 16684T, respectively. Q-10 was the predominant respiratory ubiquinone as in the other members of the genus Rubellimicrobium. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphoglycolipid, glycolipid and the major fatty acids were C18:1 ω7c, C16:0 and C10:0 3-OH, which are very different from the valid published species. The DNA G + C content was 67.7 mol%. Both phylogenetic and chemotaxonomic evidence supports that YIM 48858T is a novel species of the genus Rubellimicrobium, for which the name Rubellimicrobium roseum sp. nov. is proposed. The type strain is YIM 48858T (=CCTCC AA 208029T =KCTC 23202T).  相似文献   

16.
Zou Y  Yang L  Liu G  Li Y  Zhu Y  Zhang Z 《The protein journal》2011,30(1):66-71
We report the characterization of three Superoxide dismutase (sod) genes isolated from a bacterium in the Geobacillus genus. We isolated the bacterium from high-temperature pond mud and used 16S rRNA gene sequence to confirm its identity in the Geobacillus genus. The three genes Mn-sod, Fe/Mn-sod, and Cu/Zn-sod were cloned and analyzed. Their open reading frames are Mn-sod: 615 bp encoding a 204 amino acid protein; Fe/Mn-sod: 1,236 bp encoding a 411 amino acid protein; Cu/Zn-sod: 522 bp encoding a 173 amino acid protein. When these sod genes were expressed in Escherichia coli, only Mn-SOD was able to be purified. The activity of the purified Mn-SOD we got was about 2,730 U/mg. Studies of this Mn-SOD showed that it was thermostable at 60°, had 70% activity at 80° after 2.5 h, and still had 30% activity at 90° after 2.5 h. Mn-SOD activity required the ion Mn2+. Based on gel electrophoresis, we deduced that this Mn-SOD was a homotetramer. No activity was detected after the other two genes (Fe/Mn-sod, Cu/Zn-sod) were expressed in Escherichia coli, but activities were detected when expressed in Pichia pastoris.  相似文献   

17.
We obtained puffer fish Fugu obscurus from Wudi, China and analyzed the level of tetrodotoxin (TTX) toxictiy by mouse bioassay. The ovary showed the highest potency (125 MU/g), followed by the liver, intestine, and skin. A TTX-producing strain, namely, W-3, was isolated from the ovary of puffer fish F. obscurus. After culturing at 28 °C for 48 h, toxins were extracted from the liquid medium and analyzed by mouse bioassay, high-performance liquid chromatography, and gas chromatography-mass spectrometry. The results showed that strain W-3 produced TTX and related compounds. Physiological and biochemical characterization and 16S rRNA analysis indicated that this strain represents a novel species within the Bacillus genus; we named this strain as Bacillus sp. W-3. Our results suggested that marine bacteria play a role in the production of TTX in puffer fish F. obscurus.  相似文献   

18.
Geobacillus, a bacterial genus, is represented by over 25 species of Gram-positive isolates from various man-made and natural thermophilic areas around the world. An isolate of this genus (M-7) has been acquired from a thermal area near Yellowstone National Park, MT and partially characterized. The cells of this organism are globose (ca. 0.5 μ diameter), and they are covered in a matrix capsule which gives rise to elongate multicelled bacilliform structures (ranging from 3 to 12 μm) as seen by light and atomic force microscopy, respectively. The organism produces unique petal-shaped colonies (undulating margins) on nutrient agar, and it has an optimum pH of 7.0 and an optimum temperature range of 55–65°C. The partial 16S rRNA sequence of this organism has 97% similarity with Geobacillus stearothermophilus, one of its closest relatives genetically. However, uniquely among all members of this genus, Geobacillus sp. (M-7) produces volatile organic substances (VOCs) that possess potent antibiotic activities. Some of the more notable components of the VOCs are benzaldehyde, acetic acid, butanal, 3-methyl-butanoic acid, 2-methyl-butanoic acid, propanoic acid, 2-methyl-, and benzeneacetaldehyde. An exposure of test organisms such as Aspergillus fumigatus, Botrytis cinerea, Verticillium dahliae, and Geotrichum candidum produced total inhibition of growth on a 48-h exposure to Geobacillus sp.(M-7) cells (ca.107) and killing at a 72-h exposure at higher bacterial cell concentrations. A synthetic mixture of those available volatile compounds, at the ratios occurring in Geobacillus sp. (M-7), mimicked the bioactivity of this organism.  相似文献   

19.
A novel thermophilic, alkali-tolerant, and CO-tolerant strain JW/WZ-YB58T was isolated from green mat samples obtained from the Zarvarzin II hot spring in the Uzon Caldera, Kamchatka (Far East Russia). Cells were Gram-type and Gram stain-positive, strictly aerobic, 0.7–0.8 μm in width and 5.5–12 μm in length and produced terminal spherical spores of 1.2–1.6 μm in diameter with the mother cell swelling around 2 μm in diameter (drumstick-type morphology). Cells grew optimally at pH25°C 8.2–8.4 and temperature 50–52°C and tolerated maximally 6% (w/v) NaCl. They were strict heterotrophs and could not use either CO or CO2 (both with or without H2) as sole carbon source, but tolerated up to 90% (v/v) CO in the headspace. The isolate grew on various complex substrates such as yeast extract, on carbohydrates, and organic acids, which included starch, d-galactose, d-mannose, glutamate, fumarate and acetate. Catalase reaction was negative. The membrane polar lipids were dominated by branched saturated fatty acids, which included iso-15:0 (24.5%), anteiso-15:0 (18.3%), iso-16:0 (9.9%), iso-17:0 (17.5%) and anteiso-17:0 (9.7%) as major constituents. The DNA G+C content of the strain is 45 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain JW/WZ-YB58T is distantly (<93% similarity) related to members of Bacillaceae. On the basis of 16S rRNA gene sequence, physiological and phenotypic characteristics, the isolate JW/WZ-YB58T (ATCC BAA-1258; DSM 17740) is proposed to be the type strain for the type species of the new taxa within the family Bacillaceae, Thermalkalibacillus uzoniensis gen. nov. sp. nov. The Genbank accession number for the 16S rRNA gene sequence is DQ221694.The Genbank accession number for the 16S rRNA gene sequence of strain JW/WZ-YB58T is DQ221694.  相似文献   

20.
Two novel Gram-positive actinobacteria, designated H97-3T and H83-5, were isolated from marine sediment samples and their taxonomic positions were investigated by a polyphasic approach. Both strains formed vegetative hyphae in the early phase of growth but the hyphae eventually fragmented into coccoid cells. The peptidoglycan type was found to be A4α. The predominant menaquinone was MK-9(H4), and the major fatty acids were anteiso-C15:0, anteiso-C17:0 and C16:0. The DNA G+C content was 74.0–74.9 mol %. 16S rRNA gene sequencing analysis revealed that strains H97-3T and H83-5 represented novel members of the family Cellulomonadaceae. Their nearest phylogenetic neighbours were the members of the genus Oerskovia, with a similarity of 98.3–98.4 %. However, strains H97-3T and H83-5 were distinguishable from the members of the genus Oerskovia and the other genera of the family Cellulomonadaceae in terms of chemotaxonomic characteristics and phylogenetic relationship. The result of the DNA–DNA hybridization indicated that strains H97-3T and H83-5 belonged to the same species. Therefore, strains H97-3T and H83-5 represent a novel genus and species of the family Cellulomonadaceae, for which the name Sediminihabitans luteus gen. nov., sp. nov. is proposed. The type strain of S. lutes is H97-3T (=NBRC 108568T = DSM 25478T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号