首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the effects of an intraarterial administration of nicotine on the occurrence of apnoea and the activity of rib cage respiratory muscles, we studied 31 anaesthetized, spontaneously breathing cats. Phrenic activity was used as an index of neural inspiratory drive. Activity of parasternal intercostal (PIM) and triangularis sterni (TS) muscles was recorded. Nicotine in a dose of 65 microg/kg was injected into the left common carotid artery prior to and after midcervical vagotomy, preceded by section of the superior laryngeal nerves (SLNs). In eight additional cats, initially neurotomized as mentioned, nicotine was injected after bilateral disruption of the carotid sinus nerves (CSNs). Nicotine induced prompt expiratory apnoea of mean duration of 5.4+/-0.3s in 19 non-vagotomized and of 5.92+/-0.51 s (mean+/-S.E.M.) in 13 vagotomized cats. The occurrence and duration of the temporary arrest of breathing were reduced by midcervical vagotomy but not by subsequent CSNs neurotomy, which abolished post-apnoeic acceleration of breathing.In post-nicotine breathing of increased tidal volume and respiratory rate, peak activity of the parasternal intercostal muscles increased from baseline of 3.2+/-1.2 to 9.5+/-2.0 arbitrary units (p<0.001). The peak height of the phrenic nerve elevated from 7.9+/-0.9 to 14.5+/-1.7 arbitrary units (p<0.001). That of the triangularis sterni showed no change.The response of the respiratory effectors elicited by nicotine was independent of the vagal integrity and may be attributed to activation of nicotine receptors within the brainstem respiratory neurones.  相似文献   

2.
Kopczyńska B 《Life sciences》2007,80(19):1738-1745
Anaesthetized and spontaneously breathing rats were used to study the cardio-respiratory effects of intravenous anandamide administration. To investigate the role of particular levels of the afferent pathway in this response rats were challenged with bolus injection of anandamide (1 mg kg(-1)) into the femoral vein while intact, following bilateral superior laryngeal nerves (SLNs) section and after midcervical vagotomy. To test the hypothesis that the activation of the vanilloid receptors (VR1) as well as cannabinoid receptors (CB1) contributes to the anandamide-induced response administrations of anandamide were preceded by nonselective VR1 antagonist ruthenium red or selective CB1 antagonist AM281. Anandamide evoked apnoea of mean duration of 4.84+/-0.75 s in all animals while intact which was shortened by subsequent neurotomies, after SLNs section to 3.3+/-0.57 s (P<0.05) and after midcervical vagi section to 1.99+/-0.24 s (P<0.01). In post-apnoeic breathing tidal volume (V(T)) was reduced in all neural states. Anandamide evoked hypotension in the intact and SLNs neurotomized rats. Midcervical vagotomy reduced this fall in blood pressure. Both antagonists ruthenium red and AM281 eliminated post-anandamide apnoea and hypotension but had no effect on post-apnoeic depression of V(T). Subsequent SLNs and cervical vagi sections did not eliminate but only reduced post-anandamide depression of breathing. Midcervical vagotomy lessened anandamide-induced hypotension. Apnoeic and hypotensive response to anandamide was mediated by both VR1 and CB1 receptors. Post-anandamide decline of V(T) might depend on different type of receptors.  相似文献   

3.
Respiratory effects of morphine injection to the femoral vein were investigated in urethane and chloralose anaesthetized and spontaneously breathing rats, prior to and after midcervical vagotomy. Bolus injection of morphine HCl at a dose of 2 mg/kg of body weight induced depression of ventilation in all rats, due to the significant decrease in tidal volume and to the decline in respiratory rate both pre- and post-vagotomy. Expiratory apnoea of mean duration of 10.0+/-3.4 s was present in the vagally intact rats only. Bilateral midcervical section of the vagus nerve precluded the occurrence of apnoea. Prolongation of the expiratory time (T(E morphine) / T(E control)), which amounted to 10.7+/-2.2-fold in the intact state, was apparently reduced to 1.5+/-0.3-fold after division of the vagi. Morphine significantly decreased mean arterial pressure (MAP) at 30 s after the challenge, the effect persisted for not less than 1 minute and was absent in vagotomized rats. The respiratory changes evoked by morphine reverted to the control level after intravenous injection of naloxone at a dose of 1 mg/kg. Results of this study indicate that opioid receptors on vagal afferents are responsible for the occurrence of apnoea and hypotension evoked by morphine.  相似文献   

4.
The present study reports the results of physiological and anatomical experiments in which the purpose was to determine whether desheathing the nodose ganglion is a reliable method of vagal de-efferentation in the ferret. In physiological studies, the effects of electrically stimulating the treated and untreated vagal nerves on cardiovascular and intestinal responses were examined and compared with previously obtained data after left supranodose vagotomy. The anatomical studies illustrated the effects of desheathing the left nodose ganglion on the transport of horseradish peroxidase (HRP) within a thoracic vagal communicating branch. These data were compared to data from control animals and animals that had undergone left supranodose vagotomy. The results demonstrated that severing the fascicles overlying the left nodose ganglion and allowing the nerve fibers to degenerate, caused no reduction in labeled efferent cell bodies in the left dorsal motor nucleus of the vagus as compared to controls. However, after left supranodose vagotomy there were no efferent cell bodies labeled in the left dorsal motor nucleus of the vagus. Following degeneration of the fascicles, electrical stimulation of the peripheral cut end of this nerve did not abolish the efferent responses in 7 out of 9 animals studied, whereas supranodose vagotomy abolished the responses in all animals. These findings demonstrate that desheathing the nodose ganglion and thereby removing the nerve bundles overlying the nodose ganglion is not a guaranteed method of destroying the efferent fibers in the vagus nerve of the ferret. Supranodose vagotomy, therefore, is a more reliable method of de-efferentation in this species.  相似文献   

5.
Cardio-respiratory reflex effects of an exogenous serotonin challenge are suggested to be modulated by activation of the peripheral 5HT2 and 5HT3 receptors. In the present experiments the blocking effects of serotoninergic active drugs: ketanserin and tropanserin (MDL 72222) were studied in six pentobarbitone-chloralose anaesthetized cats. Bolus injection of serotonin (0.05 mg.kg(-1)) into the right femoral vein evoked prompt apnea, hypotension followed by tachypnoeic breathing. Pre-treatment with ketanserin (0.1 mg.kg(-1)), 5HT2 receptor antagonist, shortened the duration of post-serotonin apnea (P < 0.05), but had no effect on the pattern of post-apnoeic breathing. 5HT3 receptor blockade with the selective antagonist MDL 72222 (0.2 mg.kg(-1)) totally eliminated respiratory response to serotonin. In breaths that followed post-serotonin apnea, peak amplitude of the integrated phrenic signal was reduced (P < 0.001), unbiased by ketanserin blockade, and remained at the baseline level in MDL treated rats. Serotonin-induced hypotension was unaffected by the blockade of 5HT2 receptors. Inactivation of 5HT3 receptors with MDL attenuated the fall in blood pressure (P < 0.05). This data suggests that the squeal of serotonin-induced pulmonary chemoreflex, i.e. respiratory arrest, post-apnoeic pattern of breathing, bradycardia, and partially hypotension are mediated by 5HT3 receptors.  相似文献   

6.
In this study, we evaluated the vagal afferent response to secretin at physiological concentrations and localized the site of secretin's action on vagal afferent pathways in the rat. The discharge of sensory neurons supplying the gastrointestinal tract was recorded from nodose ganglia. Of 91 neurons activated by electrical vagal stimulation, 19 neurons showed an increase in firing rate in response to intestinal perfusion of 5-HT (from 1.5 +/- 0.2 to 25 +/- 4 impulses/20 s) but no response to intestinal distension. A close intra-arterial injection of secretin (2.5 and 5.0 pmol) elicited responses in 15 of these 19 neurons (from 1.5 +/- 0.2 impulses/20 s at basal to 21 +/- 4 and 43 +/- 5 impulses/20 s, respectively). Subdiaphragmatic vagotomy and perivagal application of capsaicin, but not supranodose vagotomy, completely abolished the secretin-elicited vagal nodose neuronal response. In a separate study, 9 tension receptor afferents among 91 neurons responded positively to intestinal distension but failed to respond to luminal 5-HT. These nine neurons also showed no response to administration of secretin. As expected, immunohistochemical studies showed that secretin administration significantly increased the number of Fos-positive neurons in vagal nodose ganglia. In conclusion, we demonstrated for the first time that vagal sensory neurons are activated by secretin at physiological concentrations. A subpopulation of secretin-sensitive vagal afferent fibers is located in the intestinal mucosa, many of which are responsive to luminal 5-HT.  相似文献   

7.
Respiratory effects of intravenous serotonin and nicotine were investigated prior to and after bilateral neurotomy of the carotid sinus nerves (CSNs) in eight pentobarbitone/chloralose-anaesthetised, bilaterally vagotomised and superior laryngeal nerves-sectioned cats. Injection of 188 nmol kg(-1) serotonin (hydrogen oxalate salt, 50 microg x kg(-1)) prior to and after CSNs section induced an expiratory apnoea of, respectively, 7.9 +/- 1.25 s and 8.3 +/- 1.6 s duration (mean +/- S.E.M.) in, respectively, five and three of those cats. In all cats, the serotonin challenge produced a period of accelerated breathing (P < 0.05) both prior to and after section of CSNs. Injection of a 433 nmol nicotine bolus (hydrogen tartrate salt, 200 microg) increased tidal volume by 25 +/- 8% in cats with intact CSNs (P < 0.01), but decreased it by 13 + 10% (P < 0.05) after CSNs section. Nicotine, but not serotonin, transiently increased mean arterial blood pressure in our cats, which rise was delayed by CSNs cut. Results of this study indicate that the respiratory response to serotonin occurs beyond carotid body chemoreceptors in vagotomised cats, and suggest that the volume response to intravenous nicotine depends qualitatively on carotid body chemoreceptor input in this experimental model.  相似文献   

8.
The vanilloid receptor VR1 is a nonselective cation channel activated by capsaicin as well as increases in temperature and acidity, and can be viewed as molecular integrator of chemical and physical stimuli that elicit pain. The distribution of VR1 receptors in peripheral and central processes of rat primary vagal afferent neurons innervating the gastrointestinal tract was investigated by immunohistochemistry. Forty-two percent of neurons in the nodose ganglia retrogradely labeled from the stomach wall expressed low to moderate VR1 immunoreactivity (VR1-IR). VR1-IR was considerably lower in the nodose ganglia as compared to the jugular and dorsal root ganglia. In the vagus nerve, strongly VR1-IR fibers ran in separate fascicles that supplied mainly cervical and thoracic targets, leaving only weakly VR1-IR fibers in the subdiaphragmatic portion. Vagal afferent intraganglionic laminar endings (IGLEs) in the gastric and duodenal myenteric plexus did not express VR1-IR. Similarly, VR1-IR was contained in fibers running in perfect register with vagal afferents, but was not colocalized with horseradish peroxidase in the same varicosities of intramuscular arrays (IMAs) and vagal afferent fibers in the duodenal submucosa anterogradely labeled from the nodose ganglia. Only in the gastric mucosa did we find evidence for colocalization of VR1-IR in vagal afferent terminals. In contrast, many nerve fibers coursing through the myenteric and submucosal plexuses contained detectable VR1-IR, the majority of which colocalized calcitonin gene-related peptide immunoreactivity. In the dorsal medulla there was a dense plexus of VR1-IR varicose fibers in the commissural, dorsomedial and gelatinosus subnuclei of the medial NTS and the lateral aspects of the area postrema, which was substantially reduced, but not eliminated on the ipsilateral side after supranodose vagotomy. It is concluded that about half of the vagal afferents innervating the gastrointestinal tract express low levels of VR1-IR, but that presence in most of the peripheral terminal structures is below the immunohistochemical detection threshold.  相似文献   

9.
Summary The number and caliber of myelinated and non-myelinated fibers of entire and sensory vagal nerves of cats were studied by means of light and electron microscopy. The results obtained with electron microscopy show that the non-myelinated component is particularly rich (about 40,000 elements at the cervical level), with clearly higher numbers of fibers than demonstrated thus far with light microscopy. The ratio of myelinated to non-myelinated fibers is on the average 1 4 for the total vagi and only 1 8 for the sensory vagal component. The comparison of the nerve above and below the level of the nodose ganglion shows that (1) mean fiber diameter is usually greater at the infranodose than at the supranodose level, and (2) some myelinated fibers of small diameter occurring below the nodose ganglion become non-myelinated above it. Additionally, the number of non-myelinated fibers per Schwann cell is greater at the supranodose than at the infranodose level; this speaks in favor of a reorganization of the C-fiber population from one level to the other.  相似文献   

10.
The superior cervical ganglion (SCG) was reinnervated by vagal afferent fibers by cross anastomosis between the cranial end of nodose ganglion and the caudal end of SCG in cats. Formation of functional synapses was evidenced by unilateral mydriasis and contraction of the nictitating membrane in response to inflation of the stomach with a balloon or to electrical stimulation of the afferent vagus. The acetylcholine (ACh) content in the cross-anastomosed SCG (reinnervated by vagal afferent fibers) was measured. In anastomosed SCG, the ACh content was about half of normal SCG, but significantly higher than chronically decentralized SCG. Also the ACh content in nodose ganglion (NDG) was investigated in situations in which there was anastomosis, chronic supra, infra, or supra-/infranodose vagotomy. The ACh content of anastomosed NDG was near that of supranosdose vagotomized ganglion. The ACh content of supra-/infranodose vagotomized NDG, which can be considered the NDG itself, was as much as that of normal intact NDG. It was found that the ACh content of infranodose vagotomized NDG was increased, possibly the result of vagal efferent axonal flow or transport. The ACh content of vagal trunk with or without infranodose vagotomy was also measured. The ACh content of vagal trunk with infranodose vagotomy was smaller than that of the normal trunk, but there was still a considerable quantity of ACh. There was no significant change in wet weight of the SCG and NDG before or after the operations. From these results we have concluded that the transmission of the cross-anastomosed SCG (reinnervated with vagal afferent nerve) was cholinergic; and that the vagal afferent nerve have afferent cell bodies not only in NDG but also in peripheral vagal trunks (infranodose portion). These results strongly suggest that vagal afferent fibers are in part cholinergic.  相似文献   

11.
Previous reports have shown that activation of left ventricular receptors with sympathetic afferents elicits increases in respiratory output and arterial pressure. The purpose of the present study was to determine whether similar responses are produced by chemical activation of epicardial receptors in the right ventricle. Receptors were stimulated by applying either capsaicin (10 micrograms) or bradykinin (500 ng) to the epicardial surface of the right ventricle in anesthetized cats. Application of either chemical evoked an increase in respiratory output (phrenic nerve activity), a decrease in heart rate, and a nonsignificant increase in arterial pressure in intact cats. However, capsaicin and bradykinin produced significant increases in arterial pressure, heart rate, and respiratory output after bilateral cervical vagotomy. In contrast, a fall in both heart rate and arterial pressure with only small increases in respiratory output were evoked after bilateral removal of the stellate ganglia in cats with intact vagi. Only small responses to the chemical stimulation of right ventricular receptors persisted after combined vagotomy and stellate ganglionectomy. These findings suggest that 1) activation of epicardial receptors with sympathetic afferents originating in the right ventricle causes an increase in cardiorespiratory function, and 2) activation of right ventricular receptors with vagal afferents produces decreases in heart rate and arterial pressure.  相似文献   

12.
This study tests three hypotheses regarding mechanisms that produce rapid shallow breathing during a severe inspiratory resistive load (IRL): 1) an intact vagal afferent pathway is necessary; 2) diaphragm fatigue contributes to tachypnea; and 3) hypoxia may alter the pattern of respiration. We imposed a severe IRL on pentobarbital sodium-anesthetized dogs, followed by bilateral vagotomy, then by supplemental O2. IRL alone produced rapid shallow breathing associated with hypercapnia and hypoxia. After the vagotomy, the breathing pattern became slow and deep, restoring arterial PCO2 but not arterial PO2 toward the control values. Relief of hypoxia had no effect, and at no time was there any evidence of fatigue of the diaphragm as measured by the response to phrenic nerve stimulation. We conclude that an intact afferent vagal pathway is necessary for the tachypnea resulting from a severe IRL, neither hypoxia nor diaphragm fatigue played a role, and, although we cannot rule out stimulation of vagal afferents, the simplest explanation for the increased frequency in our experiments is increased respiratory drive due to hypercapnia.  相似文献   

13.
We have examined breathing patterns and respiratory mechanics in anesthetized tracheostomized newborn piglets and adult pigs and the changes determined by cervical bilateral vagotomy. Piglets had a respiratory system compliance and resistance, on a per kilogram basis, respectively, higher and smaller than the adults. After vagotomy neither variable changed in the newborn, but resistance dropped in the adult. This may suggest that efferent vagal control of bronchomotor tone is more pronounced in the adult. Respiratory system time constant was longer in newborns both before and after vagotomy. The distortion of the chest wall, examined as the ratio between the volume inhaled spontaneously and the passive volume for the same abdominal motion, was more marked in newborns, reflecting their higher chest wall compliance. The work per minute, computed from the pressure and volume changes, was larger in piglets. After vagotomy the external work per minute was not different; however, the larger tidal volumes were accompanied by a larger chest distortion. This may indicate that vagal control of the breathing pattern, by limiting the depth of inspiration and hence the amount of chest distortion, has implications on the energetics of breathing.  相似文献   

14.
In twenty anaesthetized and spontaneously breathing rabbits airway pressures were measured above and below the larynx during tidal respiration through the larynx. Peak inspiratory and expiratory pressures at both sites were recorded in control conditions and then compared to values obtained in the course of progressive denervation of the airways. The two methods of denervation consisted of (1) bilateral section of superior and recurrent laryngeal nerves and of the midcervical vagotomy (horizontal method); (2) right-sided sections of the three nerves followed by left-sided sections (vertical method). Motor denervation of the larynx due to RLNs neurotomy (horizontal method) produced significant increases in intratracheal pressures in both phases of the respiratory cycle. Less prominent increments in pressures were achieved on RLNs neurotomy in the vertical method. SLNs section and vagotomy had little additional effect on airway pressures. Our results indicate that unilateral laryngeal palsy poses far smaller obstruction to breathing than simultaneous bilateral denervation, and that afferent denervation of the larynx has no effect on airway pressures.  相似文献   

15.
Breath-by-breath measurements of pulmonary resistance (RL) were used to study the bronchomotor effects produced by the inhalation of a CO2-enriched gas mixture in anaesthetized, spontaneously breathing cats. A significant increase in RL occurred from the second inhalation of the hypercapnic gas mixture. This bronchoconstrictor effect lasted about 18 seconds, then a marked decrease in RL was observed. The secondary bronchodilatation persisted during the entire hypercapnic test (4 min). After surgical suppression of the sensory vagal component at the level of the nodose ganglion (bilateral sensory vagotomy), the early bronchoconstrictor effect of CO2 disappeared, but the secondary bronchodilatation was unchanged. In other experiments, after procaine block of the nervous conduction in non-myelinated vagal fibers, the bronchomotor effects of CO2 were the same as those observed after sensory vagotomy. In contrast, an electrotonic block of both vagus nerves, which abolished nervous conduction in myelinated fibers, did not suppress the bronchoconstrictor response to hypercapnia. Thus, the early increase in RL, which follows inhalation of a hypercapnic gas mixture, seems to be reflexly mediated by vagal afferents, especially by non-myelinated fibers.  相似文献   

16.
Fermentable carbohydrates including dietary fibers and resistant starch produce short-chain fatty acids (SCFAs), including acetate, propionate and butyrate, through microbial fermentation in the intestine of rodents and humans. Consumption of fermentable carbohydrate and SCFAs suppress food intake, an effect involving the brain. However, their signaling pathway to the brain remains unclear. Vagal afferents serve to link intestinal information to the brain. In the present study, we explored possible role of vagal afferents in the anorexigenic effect of SCFAs. Intraperitoneal (ip) injection of three SCFA molecules (6 mmol/kg) suppressed food intake in fasted mice with the rank order of butyrate > propionate > acetate. The suppressions of feeding by butyrate, propionate and acetate were attenuated by vagotomy of hepatic branch and blunted by systemic treatment with capsaicin that denervates capsaicin-sensitive sensory nerves including vagal afferents. Ip injection of butyrate induced significant phosphorylation of extracellular-signal-regulated kinase 1/2, cellular activation markers, in nodose ganglia and their projection site, medial nucleus tractus solitaries. Moreover, butyrate directly interacted with single neurons isolated from nodose ganglia and induced intracellular Ca2+ signaling. The present results identify the vagal afferent as the novel pathway through which exogenous SCFAs execute the remote control of feeding behavior and possibly other brain functions. Vagal afferents might participate in suppression of feeding by intestine-born SCFAs.  相似文献   

17.
Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in ”vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.  相似文献   

18.
The chicken carotid body receives numerous branches from the vagus nerve, especially distal (nodose) ganglion, and the recurrent laryngeal nerve. Dense networks of peptidergic nerve fibers immunoreactive for substance P, calcitonin gene-related peptide (CGRP), galanin, vasoactive intestinal peptide (VIP) and neuropeptide Y are distributed in and around the carotid body. Substance-P- and CGRP-immunoreactive fibers projecting to the chicken carotid body mainly come from the vagal ganglia. In the present study, various types of denervation experiments were performed in order to clarify the origins of VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies. After nodose ganglionectomy, midcervical vagotomy or excision of the recurrent laryngeal nerve, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers were unchanged in the carotid body region. Furthermore, these peptidergic fibers remained unaffected even by removal of the nodose ganglion in conjunction with severance of the recurrent laryngeal nerve that induced a marked decrease in TuJ1-immunoreactive fibers in the carotid body region. VIP-, galanin- and neuropeptide-Y-immunoreactive fibers are densely distributed around the arteries supplying the carotid body in normal chickens. The peptidergic fibers around the arteries were also unaffected after the denervation experiments. However, after removal of the 14th cervical ganglion of the sympathetic trunk, which lies close to the vertebral artery on the root of the brachial plexus and issues prominent branches to the artery, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers almost disappeared in the carotid body region. The ganglion contained many VIP-, galanin- and neuropeptide-Y-immunoreactive neurons. Thus it is clear that VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid body region are mainly derived from the 14th cervical sympathetic ganglion via the vertebral artery.  相似文献   

19.
The mechanisms by which chronic cervical spinal cord injury alters respiratory function and plasticity are not well understood. We speculated that spinal hemisection at C(2) would alter the respiratory pattern controlled by vagal mechanisms. Expired volume (V(E)) and respiratory rate (RR) were measured in anesthetized control and C(2)-hemisected rats at 1 and 2 mo postinjury. C(2) hemisection altered the pattern of breathing at both postinjury time intervals. Injured rats utilized a higher RR and lower V(E) to maintain the same minute ventilation as control rats. After bilateral vagotomy, the pattern of breathing in injured rats was not different from controls. The frequency of augmented breaths was higher in injured rats at 2 mo postinjury before vagotomy; however, the V(E) of augmented breaths was not different between groups. In conclusion, C(2) hemisection alters the pattern of breathing at 1 and 2 mo postinjury via vagal mechanisms.  相似文献   

20.
Intravenous nicotine (20-60 micrograms/kg) produced an initial brief apnoea followed by hyperventilation in anaesthetized cats. The apneic response to nicotine remained uneffected by atropine, by phentolamine or propranolol. Hexamethonium and guanethedine sulphate antagonized the apneic response. In bilateral vagotomized cats, nicotine failed to produce respiratory apnoea. Veratridine and phenyldiguanide produced apnoea similar to that produced by nicotine within 2-3 sec. administered intraartrially. Nicotine failed to stimulate pulmonary stretch receptors as did veratridine in artificially ventilated cats. The alpha and gamma motoneurone activity of inspiratory and expiratory muscles and the phrenic efferent activity were inhibited during apnoea. These inhibitions were absent in vagotomized cats. In conclusion, these results suggest that the nicotine induced apneic response is mediated through pulmonary vagal afferents, probably through J-receptors, which in turn inhibit the motoneurone activity involving the respiratory muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号