首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contact site of histones 2A and 2B in chromatin and in solution   总被引:1,自引:0,他引:1  
Irradiation of isolated nuclei or of a complex of histones 2A (H2A) and 2B (H2B) with ultraviolet light produces a covalent cross-link between H2A and H2B. Sequence analysis of the peptides isolated from the H2A-H2B dimer formed in solution and in nuclei demonstrated that both dimers are produced through the covalent linkage of Tyr-40 of H2B and Pro-26 of H2A. Tyrosyl residues proximal to Tyr-40 did not produce a cross-link with H2A, thereby indicating that strict conformational parameters are required for production of the H2A-H2B cross-link. We conclude that the precise juxtaposition of Tyr-40 of H2B and Pro-26 of H2A in this region of the H2A/H2B contact site is not altered upon interaction of these histones with H3 and H4 (tetramer), DNA, or other chromosomal components during nucleosome assembly.  相似文献   

2.
We have studied the sample concentration-dependent and external stress-dependent stability of native and reconstituted nucleosomal arrays. Whereas upon stretching a single chromatin fiber in a solution of very low chromatin concentration the statistical distribution of DNA length released upon nucleosome unfolding shows only one population centered around approximately 25 nm, in nucleosome stabilizing conditions a second population with average length of approximately 50 nm was observed. Using radioactively labeled histone H3 and H2B, we demonstrate that upon lowering the chromatin concentration to very low values, first the linker histones are released, followed by the H2A-H2B dimer, whereas the H3-H4 tetramer remains stably attached to DNA even at the lowest concentration studied. The nucleosomal arrays reconstituted on a 5 S rDNA tandem repeat exhibited similar behavior. This suggests that the 25-nm disruption length is a consequence of the histone H2A-H2B dimer dissociation from the histone octamer. In nucleosome stabilizing conditions, a full approximately 145 bp is constrained in the nucleosome. Our data demonstrate that the nucleosome stability and histone octamer integrity can be severely degraded in experiments where the sample concentration is low.  相似文献   

3.
The contact-site cross-linkers tetranitromethane, UV light, formaldehyde, and a monofunctional imido ester have been used to generate a collection of histone-histone dimers and trimers from nuclei and chromatin. Four different H2B-H4 dimers have been isolated. Preliminary CNBr peptide mapping has shown that all are cross-linked at different positions that are apparently clustered within the C-terminal regions of these histones. Similarily, two different H2A-H2B dimers and two different H2A-H2B-H4 trimers have been partially characterized. The data suggest a functional map for H2B in which the N-terminal third interacts with DNA, the middle third interacts with H2A, and the C-terminal third interacts with H4. We hope, by pursuing this type of analysis, to develop a detailed understanding of each histone-histone binding interaction through saturation cross-linking of the binding sites.  相似文献   

4.
Photochemical cross-linking of histones to DNA nucleosomes.   总被引:10,自引:5,他引:5       下载免费PDF全文
Ultraviolet (UV)-induced cross-linking was utilized in order to identify histone-DNA interacting regions in the chromatin repeating unit. Fractionated mononucleosomes which contained 185 base pairs of DNA and a full complement of the histones, including histone H1, were irradiated with light of lambda greater than 290nm in the presence of a photosensitizer. Equimolar amounts of histones H2A and H2B were found, by two independent labeling experiments, to be cross-linked to the DNA. Based on previous finding that the UV irradiation specifically cross-links residues which are in close proximity, irrespective of the nature of the amino acid side chain or the nucleotide involved, our results indicate that the four core histones are not positioned equivalently with respect to the DNA. This arrangement allows histones H2A and H2B to preferentially cross-link to the DNA. A water soluble covalent complex of DNA and histones was isolated. This complex was partially resistant to mild nuclease digestion, it exhibited a CD spectrum similar to that of chromatin, and was found to contain histone H1. These results are compatible with a model which suggests that histone H1, though anchored to the linker, is bound to the DNA at additional sites. By doing so it spans the whole length of the nucleosome and clamps together the DNA fold around the histone core.  相似文献   

5.
A Zweidler 《Biochemistry》1992,31(38):9205-9211
We have determined the accessibility of histone tyrosine residues to react with p-nitrobenzenesulfonyl fluoride (NBSF) in intact nuclei, salt-dissociated nucleosomes, isolated histone complexes, and individual core histones. Of the 15 core histone tyrosine residues, 13 are inaccessible in native nucleosomes; only Tyr121 near the C-terminus of H2B is fully accessible, and Tyr54 of H3 is partially accessible under near-physiological conditions. When H1 and the basic N-terminal tails of the core histones are dissociated from the DNA by treating nuclei with 0.4 and 0.8 M NaCl, the two tyrosines which are adjacent to the basic regions of H2B and H3 become accessible as well. This indicates that these tyrosine residues may be involved in histone-DNA interactions, either directly or indirectly. When the H2A-H2B dimers are dissociated from the chromatin by raising the NaCl concentration to 1.2 M, three to four tyrosines located in the structured regions of H2B and H4 are exposed, suggesting that these tyrosine residues may be located at the dimer-tetramer interface. Dissociating all the histones from the DNA at an even higher ionic strength as a mixture of dimers, tetramers, and octamers does not change the pattern of Tyr exposure, but reduces the reactivity of the tyrosines at the dimer-tetramer interface as would be expected from the reassociation of H2A-H2B dimers and H3-H4 tetramers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Gel filtration and sedimentation studies have previously established that the vertebrate animal core histone octamer is in equilibrium with an (H3-H4)2 tetramer and an H2A-H2B dimer [Eickbush, T. H., & Moudrianakis, E. N. (1978) Biochemistry 17, 4955-4964; Godfrey, J. E., Eickbush, T. H., & Moudrianakis, E. N. (1980) Biochemistry 19, 1339-1346]. We have investigated the core histone octamer of wheat (Triticum aestivum L.) and have found it to be much more stable than its vertebrate animal counterpart. When vertebrate animal histone octamers are subjected to gel filtration in 2 M NaCl, a trailing peak of H2A-H2B dimer can be clearly resolved from the main octamer peak. When the plant octamer is subjected to the identical procedure, there is no trailing peak of H2A-H2B dimer, but rather a single peak containing the octamer. A sampling across the octamer peak from leading to trailing edge shows no change in the ratio of H2A-H2B to (H3-H4)2. Surprisingly, the plant octamer shows the same stability at 0.6 M NaCl, a salt concentration in which the vertebrate animal octamer dissociates into dimers and tetramers. Equilibrium sedimentation data indicate that the assembly potential of the wheat histones in 2 M NaCl is very high at all protein concentrations above 0.1 mg mL-1. In order to disrupt the forces stabilizing the plant histone octamer at high histone concentrations, the concentration of NaCl must be lowered to approximately 0.3 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The nucleosome is the fundamental packing unit of the eukaryotic genome, and CpG methylation is an epigenetic modification associated with gene repression and silencing. We investigated nucleosome assembly mediated by histone chaperone Nap1 and the effects of CpG methylation based on three-color single molecule FRET measurements, which enabled direct monitoring of histone binding in the context of DNA wrapping. According to our observation, (H3-H4)2 tetramer incorporation must precede H2A-H2B dimer binding, which is independent of DNA termini wrapping. Upon CpG methylation, (H3-H4)2 tetramer incorporation and DNA termini wrapping are facilitated, whereas proper incorporation of H2A-H2B dimers is inhibited. We suggest that these changes are due to rigidified DNA and increased random binding of histones to DNA. According to the results, CpG methylation expedites nucleosome assembly in the presence of abundant DNA and histones, which may help facilitate gene packaging in chromatin. The results also indicate that the slowest steps in nucleosome assembly are DNA termini wrapping and tetramer positioning, both of which are affected heavily by changes in the physical properties of DNA.  相似文献   

8.
We determined the 2.45 A crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base-pair DNA fragment derived from human alpha-satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein-DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent-exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A-H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged.  相似文献   

9.
The theoretical analysis of nucleosome stability at low ionic strength has been performed on the basis of consideration of different contributions to the free energy of compact state of the nucleosome DNA terminal regions. The proposed model explains: the fact of low-salt structural change; the transition point (approximately 1.7 mM NaCl) and width (approximately 1 mM); the shift of the transition to the higher salt concentrations in the case of histones tails removal by trypsin. According to the model the increase of electrostatic repulsion between neighbouring turns of DNA superhelix is the main cause of the unwinding of nucleosomal DNA terminal regions in the course of low-salt structural change. The interactions between histone (H2A-H2B) dimer and (H3-H4)2 tetramer provide the compact state of the nucleosomal DNA terminal regions. The existence of electrostatic interactions of nucleosomal DNA terminal regions with tetramer was suggested. These interactions can provide the compact state of nucleosomal DNA at physiological ionic strength even in the absence of (H2A-H2B) dimer.  相似文献   

10.
We have used the measurements of the histone fluorescence parameters to study the influence of the ionic strength on histone-DNA and histone-histone interactions in reconstructed nucleosomes. The ionic strength increase lead to the two-stage nucleosome dissociation. The dimer H2A-H2B dissociates at the first stage and the tetramer (H3-H4)2 at the second one. The dimer H2A-H2B dissociation from nucleosome is a two-stage process also. The ionic bonds between (H2A-H2B) histone dimer and DNA break at first and then the dissociation of dimer from histone tetramer (H3-H4)2 occurs. According to the proposed model the dissociation accompanying a nucleosome "swelling" and an increase of DNA curvature radius. It was shown that the energy of electrostatic interactions between histone dimer and DNA is sufficiently less than the energy of dimer-tetramer interaction. We propose that the nucleosome DNA ends interact with the dimer and tetramer simultaneously. The calculated number (approximately 30 divided by 40) of ionic bonds between DNA and histone octamer globular part practically coincides with the number of exposed cationic groups on the surface of octamer globular head. On this basis we have assumed that the spatial distribution of these groups is precisely determined, which explains the high evolutionary conservatism of the histone primary structure.  相似文献   

11.
MRL/Mp(-)+/+ mice produce antinuclear antibodies and develop a spontaneous autoimmune syndrome with lupus-like nephritis. We obtained a panel of seven histone-reactive IgG mAb from a single MRL/Mp(-)+/+ mouse. These antibodies do not react significantly with DNA or individual histones, but bind strongly to the histone H2A-H2B dimer and even more strongly to the H2A-H2B-DNA complex. These antibodies also bind to whole nuclei when tested by immunofluorescence, indicating that they recognize an epitope accessible in chromatin. The V region sequences of these antibodies have been determined. The H chain third complementarity-determining regions of these antibodies are similar to those found in anti-DNA antibodies even though the antibodies in our panel do not react with DNA in the absence of histones, suggesting that DNA is part of the subnucleosome epitope. Several of these antibodies are clonally related, supporting the hypothesis that the activation of these clones is Ag-driven. Analysis of the sequences of these antibodies indicates that they derive from autoreactive B cells that were clonally expanded and whose V region genes have undergone numerous somatic mutations.  相似文献   

12.
Analysis of the binding of C-reactive protein to chromatin subunits   总被引:17,自引:0,他引:17  
C-reactive protein (CRP) is an acute phase serum protein in man. The functional activities of CRP, like Ig, include complement activation and enhancement of phagocytosis. CRP binding to several substrates, including phosphocholine, individual denatured histones, and chromatin, has been demonstrated. We previously demonstrated that CRP binding to chromatin is dependent on the presence of histone H1, despite the fact that CRP binds to purified individual histones H2A and H2B, as well as to H1. In this report we examined the binding of CRP to native sub-nucleosomal chromatin fragments. CRP binding to the H2A-H2B dimer and (H3-H4)2 tetramer was demonstrated and these reactions were inhibited by phosphocholine. However, no binding to the subnucleosome complexes (H2A-H2B)-DNA and (H3-H4)2-DNA was seen. Similarly, CRP binding to H1 was eliminated when H1 was reconstituted with DNA. The reconstitution of H1-depleted chromatin with H1 restored CRP binding. CRP binding to nucleosome core particles, as previously demonstrated by others, was confirmed. Therefore, the interaction of CRP with individual core histones does not appear to be responsible for the binding of CRP to native chromatin. However, binding to core particles could be mediated by differentially exposed determinants on H2A and H2B.  相似文献   

13.
The accessibility to trypsin of "core" histones within the dimer (H2A-H2B), tetramer (H3-H4)2, octamer (H2A-H2B-H3-H4)2 and in chromatin was studied. It was shown that the hydrolysis of histones H2A and H2B within the dimer and octamer occurs in essentially the same way. The tetramer (H2-H4)2 becomes more compact with an increase in the ionic strength. Some of the tetramer (H3-H4)2 sites within the octamer are protected against trypsin. It was demonstrated that in terms of the histone accessibility to trypsin chromatin can exist in three states, i.e., tightly packed (in the presence of histone H1 and bivalent cations), intermediate (in the absence of histone H1 or bivalent cations) and folded (in the absence of histone H1 and bivalent cations). The folding of histones in neither of these chromatin states coincides with that within the octamer in 2M NaCl.  相似文献   

14.
NF-Y is a CCAAT-binding trimer with two histonic subunits, NF-YB and NF-YC, resembling H2A-H2B. We previously showed that the short conserved domains of NF-Y efficiently bind to the major histocompatibility complex class II Ea Y box in DNA nucleosomized with purified chicken histones. Using wild-type NF-Y and recombinant histones, we find that NF-Y associates with H3-H4 early during nucleosome assembly, under conditions in which binding to naked DNA is not observed. In such assays, the NF-YB-NF-YC dimer forms complexes with H3-H4, for whose formation the CCAAT box is not required. We investigated whether they represent octamer-like structures, using DNase I, micrococcal nuclease, and exonuclease III, and found a highly positioned nucleosome on Ea, whose boundaries were mapped; addition of NF-YB-NF-YC does not lead to the formation of octameric structures, but changes in the digestion patterns are observed. NF-YA can bind to such preformed DNA complexes in a CCAAT-dependent way. In the absence of DNA, NF-YB-NF-YC subunits bind to H3-H4, but not to H2A-H2B, through the NF-YB histone fold. These results indicate that (i) the NF-Y histone fold dimer can efficiently associate DNA during nucleosome formation; (ii) it has an intrinsic affinity for H3-H4 but does not form octamers; and (iii) the interactions between NF-YA, NF-YB-NF-YC, and H3-H4 or nucleosomes are not mutually exclusive. Thus, NF-Y can intervene at different steps during nucleosome formation, and this scenario might be paradigmatic for other histone fold proteins involved in gene regulation.  相似文献   

15.
Reconstituted nucleohistones were obtained by mixing in given conditions acid extracted histones and eukaryotic DNA. The histone/DNA ratio (w/w) was in the range 0.35 - 0.95. With the four histones (H2A2B) we have been able to obtain subunits (nucleosomes or upsilon-bodies). The variation of cirsular dichroism signal with temperature at 280 nm was measured to follow structural changes of the DNA inside the complex. The true change of ellipticity (see article) of histone-bound DNA regions, is similar for reconstituted nucleohistone and H1-depleted chromatin, and is therefore a physical probe of the presence of nucleosomes.  相似文献   

16.
Nucleosome core particles were reconstituted using mixtures of plant (corn or tobacco) and animal (chicken erythrocytes) histones. We show by electron microscopy and sucrose gradient sedimentation that H3 and H4 from tobacco and chicken erythrocytes can be interchanged in the nucleosome kernel. Cross-linking experiments with the protein cross-linking reagent dimethylsuberimidate reveal that, despite structural differences between the histones of the two species, H2A and H2B can be interchanged provided the homologous H2A-H2B dimers are dissociated prior to the annealing.  相似文献   

17.
Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different “affinity windows” for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.  相似文献   

18.
Conn KL  Hendzel MJ  Schang LM 《Journal of virology》2011,85(24):13234-13252
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.  相似文献   

19.
Banks DD  Gloss LM 《Biochemistry》2003,42(22):6827-6839
To compare the stability of structurally related dimers and to aid in understanding the thermodynamics of nucleosome assembly, the equilibrium stabilities of the recombinant wild-type H3-H4 tetramer and H2A-H2B dimer have been determined by guanidinium-induced denaturation, using fluorescence and circular dichroism spectroscopies. The unfolding of the tetramer and dimer are highly reversible. The unfolding of the H2A-H2B dimer is a two-state process, with no detected equilibrium intermediates. The H3-H4 tetramer is unstable at moderate ionic strengths (mu approximately 0.2 M). TMAO (trimethylamine-N-oxide) was used to stabilize the tetramer; the stability of the H2A-H2B dimer was determined under the same solvent conditions. The equilibrium unfolding of H3-H4 was best described by a three-state mechanism, with well-folded H3-H4 dimers as a populated intermediate. When compared to H2A-H2B, the H3-H3 tetramer interface and the H3-H4 histone fold are strikingly less stable. The free energy of unfolding, in the absence of denaturant, for the H3-H4 and H2A-H2B dimers are 12.4 and 21.0 kcal mol(-)(1), respectively, in 1 M TMAO. It is postulated that the difference in stability between the histone dimers, which contain the same fold, is the result of unfavorable tertiary interactions, most likely the partial to complete burial of three salt bridges and burial of a charged hydrogen bond. Given the conservation of these buried interactions in histones from yeast to mammals, it is speculated that the H3-H4 tetramer has evolved to be unstable, and this instability may relate to its role in nucleosome dynamics.  相似文献   

20.
Spectropolarimetric analysis of the core histone octamer and its subunits   总被引:3,自引:0,他引:3  
The secondary structure of the calf thymus core histone octamer, (H2A-H2B-H3-H4)2, and its two physiological subunits, the H2A-H2B dimer and (H3-H4)2 tetramer, was analyzed by ORD spectropolarimetry as a function of temperature and solvent ionic strength within the ranges of these experimental parameters where assembly of the core histone octamer exhibits pronounced sensitivity. While the secondary structure of the dimer is relatively stable from 0.1 to 2.0 M NaCl, the secondary structure of the tetramer exhibits complex changes over this range of NaCl concentrations. Both complexes exhibit only modest responses to temperature changes. ORD spectra of very high and very low concentrations of stoichiometric mixtures of the core histones revealed no evidence of changes in the ordered structure of the histones as a result of the octamer assembly process at NaCl concentrations above 0.67 M, nor were time-dependent changes detected in the secondary structure of tetramer dissolved in low ionic strength solvent. The secondary structure of the chicken erythrocyte octamer dissolved in high concentrations of ammonium sulfate, including those of our crystallization conditions, was found to be essentially unchanged from that in 2 M NaCl when examined by both ORD and CD spectropolarimetry. The two well-defined cleaved products of the H2A-H2B dimer, cH2A-H2B and cH2A-cH2B, exhibited reduced amounts of ordered structure; in the case of the doubly cleaved moiety cH2A-cH2B, the reductions were so pronounced as to suggest marked structural rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号