首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The responses of red nucleus neurons to stimulation of the sensorimotor cortex was studied on nembutal-anesthetized cats. Most of the rubrospinal neurons were identified according to their antidromic activation. Stimulation of the sensorimotor cortex was shown to evoke in the red nucleus neurons monosynaptic excitatory potentials with a latency of 1.85 msec, polysynaptic excitatory potentials (EPSP), and inhibitory postsynaptic potentials (IPSP) with a latency of 9–24 msec. The EPSP often produced spikes. The probability of generation of spreading excitation is greater with motor cortex stimulation. The monosynaptic EPSP are assumed to arise under the influence of the impulses arriving over the corticorubral neurons as a result of excitation of axodendritic synapses. The radial type of branching of red nucleus neurons facilitates the transition from electrotonically spreading local depolarization to an action potential triggered by the initial axonal segment. Polysynaptic EPSP and IPSP seem to be a result of activation of fast pyramidal neurons whose axon collaterals are connected via interneurons with the soma of the red nucleus neurons.L. A. Orbeli Institute of Physiology of the Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 43–51, January–February, 1971.  相似文献   

2.
We studied the postsynaptic potentials evoked from 76 trigeminal motoneurons by stimulation of the motor (MI) and somatosensory (SI) cortex in the ipsilateral and contralateral hemispheres of the cat. Stimulation of these cortical regions evoked primarily inhibitory postsynaptic potentials (PSP) in the motoneuron of the masseter muscle, but we also observed excitatory PSP and mixed reactions of the EPSP/IPSP type. The average IPSP latent period for the motoneurons of the masseter on stimulation of the ipsilateral cortex was 6.1±0.3 msec, while that on stimulation of the contralateral cortex was 5.2±0.4 msec; the corresponding figures for the EPSP were 7.6±0.5 and 4.5±0.3 msec respectively. Corticofugal impulses evoked only EPSP and action potentials in the motoneurons of the digastric muscle (m. digastricus). The latent period of the EPSP was 7.6 msec when evoked by afferent impulses from the ipsilateral cortex and 5.4 msec when evoked by pulses from the contralateral cortex. The duration of the PSP ranged from 25 to 30 msec. Postsynaptic potentials developed in the motoneurons studied when the cortex was stimulated with a single stimulus. An increase in the number of stimuli in the series led to a rise in the PSP amplitude and a reduction in the latent periods. When the cortex was stimulated with a series of pulses (lasting 1.0 msec), the IPSP were prolonged by appearance of a late slow component. We have hypothesized that activation of the trigeminal motoneurons by corticofugal impulsation is effected through a polysynaptic pathway; each functional group of motoneurons is activated in the same manner by the ipsilateral and contralateral cortex. The excitation of the digastric motoneurons and inhibition of the masseter motoneurons indicates reciprocal cortical control of their activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 512–519, September–October, 1971.  相似文献   

3.
Changes in spike potentials and EPSPs and IPSPs of neurons in the general cortex of the turtle forebrain were investigated intracellularly during habituation to flashes. The amplitudes of all these potentials were reduced although the level of the membrane potential remained unchanged. Their dependence on membrane potential was disturbed. The lowering of amplitude of the short-latency spike in response to flashes was greater than that of the spontaneous spike or of the spike after an IPSP. Considering that with extracellular recording only a selective lowering of the short-latency spike is observed, it can be concluded that depression of the spontaneous spike and of the post-IPSP spike reflects a nonspecific decrease in neuron excitability on account of prolonged intracellular recording, whereas the lowering of the short-latency spike reflects habituation at the neuronal level. Disinhibition of the amplitude of spikes and postsynaptic potentials was observed. The hypothesis that a population of synapses activated by a particular stimulus when applied repeatedly induces a short-term change in the electrogenic prperties of the nonreceptor neuron membrane, which determines the depression of the electrical responses, is put forward and discussed.M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 22–29, January–February, 1976.  相似文献   

4.
Some characteristics of spinal reflex reaction inhibition were studied in cat fetuses during the last three weeks of antenatal development. The experiments were conducted on fetuses with intact placental circulation. Restoration of the excitability of the spinal reflex arcs was very slow after stimulation of the dorsal root by a single stimulus. In embryos studied 20 days before birth the full inhibition of reflex responses lasted about 500 msec. Even 2–3 sec after a single stimulation of the afferent fibers the amplitude of the reflex response to the second stimulus was only 30–40% of the control value. It was determined that such long postactivation depression is unrelated to refractoriness or antidromic inhibition. The presence of a prolonged intense depolarization of afferent terminal fibers at these stages suggests a presynaptic inhibition as one of the most probable reasons for the prolonged postactivation depression. Another important factor in the appearance of postactivation depression is probably the morphologic and functional immaturity of synaptic structures. A reciprocal inhibition was observed in cat fetuses on the 10–12th antenatal day. On the basis of these data it is suggested that in embryogenesis presynaptic inhibition considerably precedes that of postsynaptic fibers.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 68–75, January–February, 1971.  相似文献   

5.
Responses of hippocampal pyramidal neurons were investigated intracellularly in unanesthetized rabbits immobilized with tubocurarine. A single stimulus, applied to the sciatic nerve, evoked prolonged (up to 2.5 sec) hyperpolarization of the cell membrane, accompanied by inhibition of action potentials. The latent period of the evoked hyperpolarization was 48±16.4 msec, and its amplitude 2.5±1.9 mV. In some neurons the development of hyperpolarization potentials was preceded by excitation. The suggestion is made that hyperpolarization of the membrane of pyramidal cells during peripheral stimulation is manifested as an inhibitory postsynaptic potential (IPSP), generated with the participation of hippocampal interneurons. The possibility of prolonged tonic action of interneurons from outside as a cause of prolonged inhibition of the pyramidal neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 278–284, November–December, 1969.  相似文献   

6.
A method of detecting "minimal" excitatory postsynaptic potentials (EPSP) in neurons of hippocampal area CA3 of the unanesthetized rabbit during stimulation of the septo-fimbrial region and the dentate fascia is described. The method consists of presenting a strong (a current of up to 1 mA) conditioning stimulus, inducing a distinct inhibitory postsynaptic potential (IPSP), before a near-threshold (current of 0.03–0.35 mA) testing stimulus. The response to the testing stimulus, develoing after the previous conditioning IPSP, in most cases was purely depolarizing and, judging from the change in the latent period in some cases and the absence of correlation between its amplitude and that of the IPSP, it is a pure EPSP. If the testing stimuli are presented at low enough frequency (intervals of not less than 1 sec) the amplitude of the EPSP evoked by them gradually falls. This decrease exhibits some of the characteristic properties of extinction of behavioral responses (recovery after an interruption, a more rapid decrease during repeated series of stimuli, a slower decrease in amplitude during less frequent stimulation). The amplitude of the IPSP also fell or showed no significant change. The results are evidence in support of the hypothesis that extinction is based on a mechanism of homosynaptic depression.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 3–12, January–February, 1978.  相似文献   

7.
Intracellular responses of neurons of the suprasylvian fissure to intracortical stimulation before and during topical cortical strychnine application was studied in experiments on immobilized, unanesthetized cats (a local anesthetic was used). Untreated cortical neurons responded to intracortical stimulation with a monosynaptic excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). Application of strychnine evoked epileptiform population activity and paroxysmal depolarizations of neuronal membrane potentials (MPs), followed by hyperpolarization. Increased hyperpolarizations, and the prolonged duration of their summation were responsible for an increased MP and reduced or abolished tonic spike activity. Intracellular application (as a result of diffusion from the microelectrode) of ethyleneglycoltetraacetate (EGTA) that blocked the calcium-dependent potassium membrane conductance (gK(Ca)) abolished the hyperpolarization. The development of epileptiform activity was accompanied by reduction of the IPSP, and an increase in the monosynaptic EPSP. The role of gK(Ca) and postsynaptic inhibition in epileptogenesis is discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 684–691, November–December, 1992.  相似文献   

8.
Postsynaptic potentials produced by stimulating three sites of the midbrain superior colliculus were examined in motoneurons innervating the sternocleidomastoid, the trapezius, and the platysma cervical muscles in anesthetized cats. Stimulating the ipsilateral colliculus produced EPSP in the motoneurons as well as action potentials with a latency of 1.5–3.5 msec, averaging 2.6 ± 0.1 msec. Stimulation of the contralateral colliculus evoked EPSP with a latency of 1.5–3.2 msec and averaging 2.1 ± 0.1 msec together with IPSP with latency ranging from 2.6 to 5.0 msec. It is postulated that these postsynaptic responses are both monosynpatic and bisynaptic in nature. This type of synaptic action is assumed to be one of the mechanisms responsible for coordinated head movements produced by tectofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 197–202, March–April, 1986.  相似文献   

9.
We studied the antidromic and synaptic potentials evoked from 32 digastric-muscle motoneurons by stimulation of the motor nerve to this muscle, different branches of the trigeminal nerve, and the mesencephalic trigeminal nucleus. Antidromic potentials appeared after 1.1 msec and lasted about 2.0 msec. Stimulation of the infraorbital, lingual, and inferior alveolar nerves led to development of excitatory postsynaptic potentials (EPSP) and action potentials in the motoneurons. The antidromically and synaptically evoked action potentials of the digastric-nerve motoneurons were characterized by weak after-effects. We were able to record EPSP and action potentials in two of the motoneurons investigated in response to stimulation of the mesencephalic trigeminal nucleus, the latent period being 1.3 msec. This indicates the existence of a polysynaptic connection between the mesencephalic-nucleus neurons and the digastric-muscle motoneurons. Eight digastric-muscle motoneurons exhibited inhibitory postsynaptic potentials (IPSP), which were evoked by activation of the afferent fibers of the antagonistic muscle (m. masseter). The data obtained indicate the presence of reciprocal relationships between the motoneurons of the antagonistic muscles that participate in the act of mastication.A. A. Bogomol'ts Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 52–57, January–February, 1971.  相似文献   

10.
The electrical reactions of 294 neurons of the auditory cortex to a click were recorded in experiments on cats immobilized with tubocurarine (174 intra- and 120 extracellularly). The value of the membrane potential varied from 30 to 70 mV with intracellular leads. The following types of reactions were obtained (the number of neurons is given in parentheses): a peak without slow oscillations in the membrane potential (4), EPSP (3), EPSP-peak (6), EPSP-peak-IPSP (17), EPSP-IPSP (9), primary IPSP (114, including 23 with an after-discharge). Twenty one neurons did not react to a click. The amplitude of the sub-threshold EPSP was 1–1.5 mV, the duration of the ascending part was about 10 and of the descending part 20–30 msec. The peak potential on the ascending part of the EPSP developed at the critical level of 3–4 mV. The amplitude of the peaks varied from several millivolts to 50–60. In 17 neurons prolonged hyperpolarization having all the properties of an IPSP, developed after the peak. The amplitude of these IPSP varied in different neurons from 1 to 10 mV and the duration varied from 20 to 80 msec. IPSP without preceding excitation of the given neuron were the predominant types of reaction. The latent period of these primary IPSP varied from 7 to 20 msec and the amplitude from 1 to 15 msec with a duration of 30–200, more frequently 80–100 msec. It is suggested that two types of inhibition develop in neurons of the auditory cortex in response to a click: recurrent and afferent. The functional significance of the first consists in limiting the duration of the discharge in the reacting neurons, the second prevents the development of excitation in adjacent neurons, thereby limiting the area of neuronal activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 339–349, July–August, 1971.  相似文献   

11.
Electrical activity of flexor and extensor alpha-motoneurons of the lumbar segments of cat's spinal cord as recorded intracellularly during electric stimulation of afferents of the contralateral posterior limb. Contralateral postsynaptic potentials (PSP) were shown to be evoked by activation of cutaneous and high-threshold muscle afferents. The high-threshold afferents of various muscle nerves participate to varying degrees in the generation of contralateral PSP. Contralateral inhibitory postsynaptic potentials (IPSP) were recorded in both flexor and extensor motoneurons along with contralateral excitatory postsynaptic potentials (EPSP). There are no fundamental differences in their distribution between flexor and extensor neurons. Inhibitory influences as a rule are predominant in both during the first 20 msec, and EPSP are predominant in the interval between 20 and 100 msec. The balance of excitatory and inhibitory pathway activity was found to be not as stable as that of the homolateral pathways.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 418–425, July–August, 1971.  相似文献   

12.
Experiments were conducted on anesthetized cats with microelectrode recording to study the synaptic responses that develop in the lumbar motoneurons on stimulation of the afferent fibers of groups II and III in the nerves of the ipsilateral and contralateral forelegs. Stimulation of these afferents evoked predominantly inhibitory postsynaptic potentials (IPSP) in the extensor motoneurons and excitatory postsynaptic potentials (EPSP) in the flexor motoneurons. A basically inhibitory change in the rhythmic background activity developed under the influence of descending impulsation. The duration of the total inhibition of "spontaneous" motoneuron activity corresponded to the duration of the inhibitory influences exerted by the forelimb flexor-reflex afferents (FRA) on the interneurons. The interaction of the descending and segmental PSP resulted in inhibition and facilitation of the segmental responses in the motoneurons. The ultimate result of this interaction was determined by the shifts in the membrane potential of the motoneuron and by the effects created in the interneurons.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 58–67, January–February, 1971.  相似文献   

13.
Intra- and extracellular response in area CA1 to stimulation of two independent afferent inputs, one a priming or conditioned and the other a test or primed input (C1 and C2, respectively) were recorded in surviving murine hippocampal slices. Duration and amplitude of test field potentials (FP) and of excitatory postsynaptic potentials (EPSP), were measured, as well as amplitude of "fast" and "slow" components of inhibitory postsynaptic potentials or stimulation varying between 0 and 1 sec. Conditioning brought about an increase in the duration of FP, in duration and amplitude of EPSP, and suppression of IPSP at intervals of between 50 and 500 msec peaking at 200 msec (i.e., priming effect). These changes correlated with level of IPSPb in response to conditioned stimuli. The most pronounced effect could be seen in neurons manifesting hyperpolarizing IPSP in response to test stimuli. Suppression of test IPSPa after superposition on IPSPb is thought to bring about the increase in test FP and EPSP seen during priming.Institute for Brain Research, All-Union Mental Health Research Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 6, pp. 730–739, November–December, 1990.  相似文献   

14.
Experiments using intracellular recording of potentials from neurons of the primary auditory cortex of cats anesthetized with pentobarbital showed that under the influence of tones of characteristic frequency for the neuron under test, or of electrical stimulation of nerve fibers of the spiral ganglion, innervating the center of the receptive field of the neuron, transient excitation of the latter is followed by the development of prolonged (20–250 msec) inhibition. The cause of this inhibition is an IPSP arising in the neuron after the action potential. On the basis of data showing a close connection between inhibition and the preceding spike it is concluded that it arises through the participation of a mechanism of recurrent inhibition. During the action of tones of uncharacteristic frequency or electrical stimulation of the peripheral part of the receptive field of the neuron, a response consisting of EPSP-IPSP arises in the neuron. This IPSP is accompanied by inhibition of spontaneous activity of the neuron and its responses to testing stimulation. It has been shown that this inhibition is lateral in its genesis. Characteristics of these two types of inhibition are given.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 194–201, March–April, 1984.  相似文献   

15.
Unit activity was studied in areas 3 and 4 during the conditioned placing reflex in cats. Responses of somatic cortical neurons in this case were shown to develop comparatively late — 80–100 or, more often, 200–450 msec after the conditioned stimulus. In the motor cortex responses preceded movement by 50–550 msec, whereas in the somatosensory cortex they usually began simultaneously with or after the beginning of the movement. Judging from responses of somatic cortical neurons, the placing reflex is realized by the same neuronal mechanism as the corresponding voluntary movement. The differential stimulus and positive conditioned stimulus, after extinction of the conditioned placing reflex, evoked short-latency spike responses lasting 250–350 msec in the same neurons as took part in the reflex itself. In these types of internal inhibition, responses of the neurons were thus initially excitatory in character. Participation of the neurons in the conditioned placing reflex and its extinction, disinhibition, and differentiation, is the result of a change in the time course of excitatory processes and is evidently connected with differential changes in the efficiency of the various synaptic inputs of the neuron.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 392–401, July–August, 1982.  相似文献   

16.
A single submaximal intramural application of rectangular stimuli (duration 0.2–0.5 msec) to an atropine-treated taenia coli muscle band evoked inhibitory postsynaptic potentials (IPSP) and a marked relaxation of the muscle band in the vast majority of muscle cells. The latency period of the IPSP was 122±16 msec; the times for a rise and fall of amplitude were 96±8 and 370±60 msec, respectively. The mean latency period of muscle relaxation was 800 msec. The latency period, and especially the amplitude of the IPSP depended on the intensity of the intramural stimulation. This indicates that one muscle cell is inhibited by several nerve fibers. IPSP evoked by threshold stimuli displayed a tendency toward summation, while the amplitude of the second and of subsequent IPSP evoked by low-frequency maximal stimuli was always less than that of the first IPSP. After periodic stimulation (frequency 10–60 impulses/min) was discontinued, a posttetanic decrease in IPSP amplitude was observed. Anodic polarization of the muscle band with a direct current raised the effectiveness of synaptic transmission, as was evidenced by the considerable increase in IPSP amplitude. When the muscle membrane was hyperpolarized with noradrenaline, IPSP inhibition was reversible. This is evidence that the unknown mediator and noradrenaline have a common ionic inhibitory mechanism.A. A. Bogomol'ts Institute of Physiology of the Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 544–551, September–October, 1970.  相似文献   

17.
Inhibition in the olfactory bulb of the carp was studied by recording potentials from secondary neurons intracellularly. Three types of inhibition — trace, early, and late — can arise in neurons of the olfactory bulb. Trace inhibition corresponds to hyperpolarization about 20 msec in duration, which is closely connected with the spike, but it is not after-hyperpolarization but an IPSP. Early and late inhibition correspond to IPSPs of different parameters. The first has a latency of 0–50 msec (relative to the spike) and a duration of 60–400 msec; the corresponding values for the second are 100–400 msec and 0.5–3 sec. The possible mechanisms of these types of inhibition are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 650–656, November–December, 1971.  相似文献   

18.
Stimulation of various peripheral nerve trunks evokes very similar compound postsynaptic potentials (PSP) composed of one or more excitatory postsynaptic potentials (EPSP) followed by fast and slow inhibitory postsynaptic potentials (IPSP) on the identified RPal neuron of Helix pomatia L. Evoked EPSPs were reduced or blocked by nicotine, atropine and d-tubocurarine. The two components of IPSP were different in their pharmacological sensitivity. Slow IPSP was partly or totally eliminated by ergometrine and chlorpromazine and was reduced by atropine, nicotine as well as by propranolol. Fast IPSP was reduced only in the presence of ergometrine and could not be blocked by either of the applied drugs. Participation of cholinergic transmission seems to be essential in the evoked EPSP but its partial involvement in the slow IPSP can also be supposed. A dopaminergic mechanism may take part in the generation of both components of IPSP but the receptors responsible for the slow IPSP were sensitive to other catecholamine antagonists as well, referring to a more complex origin, or to the involvement of an unknown transmitter. Comparison of PSPs evoked by stimulation of different nerves shows that presynaptic areas belonging to various peripheral sources are overlapped on the RPal neuron, and they probably act by similar transmitter substances.  相似文献   

19.
Experiments on cats anesthetized with pentobarbital showed that, depending on the intensity and frequency of acoustic stimulation, neurons in auditory area AI give responses of EPSP, EPSP-spike-IPSP, EPSP-IPSP, and IPSP type. Presentation of a tone of characteristic or near-characteristic frequency and above-threshold intensity, and also electrical stimulation of nerve fibers of the spiral ganglion, innervating the central zone of the receptive field of the neuron, evoke in most cases a response of EPSP-spike-IPSP type. Tone differing considerably in frequency from the characteristic, and electrical stimulation of peripheral zones of the receptive field, evoked responses of EPSP-IPSP or IPSP type. The range of frequencies of tones to which, at threshold intensity, an action potential is generated by the neuron is considerably narrower than the range of frequencies of tones evoking an EPSP and IPSP. Above the intensity of tone threshold IPSP is an invariable component of the response of most neurons in area AI. The appearance of an IPSP in the neuron is accompanied by depression of spontaneous activity and the neuronal response to testing stimulation. Two types of IPSP were distinguished: One type is a component of the EPSP-spike-IPSP response and arises during excitation of auditory receptors located in the central part of the receptive field of the neuron, the other arises during excitation of receptors located at the periphery of the field, and which project to neurons with other characteristic frequencies. The former arise after spike excitation of the neuron, the latter after EPSP or primarily.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 123–131, January–February, 1984.  相似文献   

20.
Changes in responses to single stimulations of the cortical surface after tetanization (frequency 50/sec, duration 1–10 sec) were studied in sensorimotor cortical neurons of an unanesthetized rabbit on intracellular and "quasiintracellular" recordings. After tetanization insufficient to generate epileptiform after-discharges, an increase was observed in the amplitude and duration of exciting postsynaptic potentials (EPSP) induced by a single test stimulus. This increase is considered as post-tetanic potentiation (PTP). Its duration did not exceed 1 min. The amplitude of inhibitory postsynaptic potentials (IPSP) showed a considerably smaller increase or did not change or even decreased. The PTP increased with an increase in the strength and duration of the tetanization, reaching especially high values during tetanization sufficiently intensive to evoke epileptiform after-discharges. In this case the response to a single test stimulus was identical to an epileptiform intracellular discharge. The data obtained confirm the important role of PTP of the exciting synapses in the generation of epileptiform after-discharges. A simple model of a neuron network with exciting and inhibiting feedbacks which accounts for the generation of epileptiform activity is examined.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 6, pp. 601–610, November–December, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号