首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strain-controlled uniaxial fatigue and monotonic tensile tests were conducted on turned femoral cortical bone specimens obtained from baboons at various ages of maturity. Fatigue loading produced a progressive loss in stiffness and an increase in hysteresis prior to failure, indicating that immature primate cortical bone responds to repeated loading in a fashion similar to that previously observed for adult human cortical bone. Bone fatigue resistance under this strain controlled testing decreased during maturation. Maturation was also associated with an increase in bone dry density, ash fraction and elastic modulus. The higher elastic modulus of more mature bone meant that these specimens were subjected to higher stress levels during testing than more immature bone specimens. Anatomical regions along the femoral shaft exhibited differences in strength and fatigue resistance.  相似文献   

2.
The elastic behaviour of trabecular bone is a function not only of bone volume and architecture, but also of tissue material properties. Variation in tissue modulus can have a substantial effect on the biomechanical properties of trabecular bone. However, the nature of tissue property variation within a single trabecula is poorly understood. This study uses nanoindentation to determine the mechanical properties of bone tissue in individual trabeculae. Using an ovariectomised ovine model, the modulus and hardness distribution across trabeculae were measured. In both normal and ovariectomised bone, the modulus and hardness were found to increase towards the core of the trabeculae. Across the width of the trabeculae, the modulus was significantly less in the ovariectomised bone than in the control bone. However, in contrast to this hardness was found not to differ significantly between the two groups. This study provides valuable information on the variation of mechanical material properties in healthy and diseased trabecular bone tissue. The results of the current study will be useful in finite element modelling where more accurate values of trabecular bone modulus will enable the prediction of the macroscale behaviour of trabecular bone.  相似文献   

3.
Polymerization of high internal phase emulsions (polyHIPEs) is a relatively new method for the production of high-porosity scaffolds. The tunable architecture of these polyHIPE foams makes them attractive candidates for tissue engineered bone grafts. Previously studied polyHIPE systems require either toxic diluents or high cure temperatures which prohibit their use as an injectable bone graft. In contrast, we have developed an injectable polyHIPE that cures at physiological temperatures to a rigid, high-porosity foam. First, a biodegradable macromer, propylene fumarate dimethacrylate (PFDMA), was synthesized that has appropriate viscosity and hydrophobicity for emulsification. The process of surfactant selection is detailed with particular focus on the key structural features of both polymer (logP values, hydrogen bond acceptor sites) and surfactant (HLB values, hydrogen bond donor sites) that enable stable HIPE formation. Incubation of HIPEs at 37 °C was used to initiate radical cross-linking of the unsaturated double bond of the methacrylate groups to polymerize the continuous phase and lock in the emulsion geometry. The resulting polyHIPEs exhibited ~75% porosity, pore sizes ranging from 4 to 29 μm, and an average compressive modulus and strength of 33 and 5 MPa, respectively. These findings highlight the great potential of these scaffolds as injectable, tissue engineered bone grafts.  相似文献   

4.
Fractures of osteoporotic vertebral bodies are increasingly stabilized with bone cement. The effects of vertebral-body stiffness before and after augmentation with bone cement and of wedge-shaped vertebral body fractures on intradiscal pressure are insufficiently known. In a finite element model of the lumbar spine the elastic modulus of cancellous bone as well as the amount and the elastic modulus of bone cement were varied and the dependency of intradiscal pressure on these parameters was calculated. In addition, a wedge-shaped vertebral-body fracture was simulated. The bulge of the vertebral-body endplate and thus the intradiscal pressure depends strongly on the grade of osteoporosis in the vertebral body. The influence of amount and elastic modulus of bone cement on intradiscal pressure is small. A wedge-shaped vertebral-body fracture causes an anterior shift of upper-body centre of gravity. If this shift is not compensated, it leads to an increased flexion moment that has to be balanced by muscle forces. In addition, this shift leads to a stronger increase of intradiscal pressure than the augmentation of the vertebral body with bone cement.  相似文献   

5.
An experimental technique and a simple analysis are presented that can be used to quantitate the affinity of red blood cell membrane for surfaces of small beads or microsomal particles up to 3 micrometers Diam. The technique is demonstrated with an example of dextran-mediated adhesion of small spherical red cell fragments to normal red blood cells. Cells and particles are positioned for contact by manipulation with glass micropipets. The mechanical equilibrium of the adhesive contact is represented by the variational expression that the decrease in interfacial free energy due to a virtual increase in contact area is balanced by the increase in elastic energy of the membrane due to virtual deformation. The surface affinity is the reduction in free energy per unit area of the interface associated with the formation of adhesive contact. From numerical computations of equilibrium configurations, the surface affinity is derived as a function of the fractional extent of particle encapsulation. The range of surface affinities for which the results are applicable is increased over previous techniques to several times the value of the elastic shear modulus. It is shown that bending rigidity of the membrane has little effect on the analytical results for particles 1--3 micrometers Diam and that results are essentially the same for both cup- and disk-shaped red cells. A simple analytical model is shown to give a good approximation for surface affinity (normalized by the elastic shear modulus) as a function of the fractional extent of particle encapsulation. The model predicts that a particle would be almost completely vacuolized for surface affinities greater than or equal to 10 times the elastic shear modulus. Based on an elastic shear modulus of 6.6 x 10(-3) dyn/cm, the range for the red cell-particle surface affinity as measured by this technique is from approximately 7 x 10(-4) to 7 x 10(-2) erg/cm2. Also, an approximate relation is derived for the level of surface affinity necessary to produce particle vacuolization by a phospholipid bilayer surface which possesses bending rigidity and a fixed tension.  相似文献   

6.
A thermo-sensitive comb-like copolymer was synthesized by grafting PNIPAAm-COOH with a single carboxy end group onto aminated alginate (AAlg) through amide bond linkages. In the copolymer, alginate was the backbone and poly(N-isopropylacrylamide) (PNIPAAm) was the pendant group. The structures of AAlg and three AAlg-g-PNIPAAm copolymers with different PNIPAAm grafting ratios were determined by FTIR and 1H NMR. The rheological properties of AAlg-g-PNIPAAm copolymer hydrogels were measured by monitoring the viscosity, storage modulus and loss modulus as a function of temperature. The lower critical solution temperature of AAlg-g-PNIPAAm copolymers was measured as 35 °C through rheological analysis. An in vitro degradation study was carried out by monitoring weight loss. It was confirmed that degradation can be controlled by PNIPAAm modification. Encapsulation of human bone mesenchymal stem cells (hBMSCs) within hydrogels showed that the AAlg-g-PNIPAAm copolymer was not cytotoxic and preserved the viability of the entrapped cells well. The thermo-sensitive AAlg-g-PNIPAAm copolymer has attractive properties that make it suitable as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.  相似文献   

7.
8.
Morsellised bone impaction grafting is commonly used for revision arthroplasty surgery. Several reports have described the mechanical behaviour of this bone material during impaction and loading. In this study we observed the unloading progress. The loose morsellised bone was modified by particle size, particle size distribution, water and fat content. Bone pellets were constructed using different impaction energies. After impaction, the pellets were loaded statically, after which their swelling was recorded at three unloading levels. We deduced two time-dependent recoil properties, the time resistant number (TRN) and the half total swelling time (HTST), and also one stiffness property, the unloading confined modulus of elasticity (UCME). In impacted morsellised bone, the progress of swelling is visco-elastic. Bone pellets with an even distribution of particle sizes have the most rapid recoil. Those with a high liquid content recoil more slowly, and to a significantly greater extent, than pellets with low liquid content. The recoil of pellets with low liquid content is instantaneous, i.e. unrecordable, and the displacement is significantly less than in other pellet samples.  相似文献   

9.

Objective

This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC).

Materials & Methods

The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.

Results

15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.

Conclusions

MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.  相似文献   

10.
An ultrasonic pulse-transit time technique is used to determine the nine orthotropic engineering constants of 32 cement-cancellous bone composites as a function of volume fractions of bone ranging from 0.0 to 0.4. The composites are manufactured using well-aligned bovine cancellous bone from the proximal end of the tibia and low viscosity bone cement. Selected composites are also subjected to mechanical compression tests to compare with the ultrasonic results. There is excellent correlation between the dynamic or ultrasonically determined moduli and the static or mechanically determined moduli; the dynamic moduli are approximately twice the static moduli and this difference is thought to be due to the effect of strain rate. An orthotropic model is assumed requiring nine independent elastic constants to be determined. The dynamic Young's modulus in the direction of major trabecular alignment, E1, increases linearly from 4.9 to 10.4 GPa as bone volume fraction increases from 0 to 0.4; dynamic E2 and E3 values increase from 4.9 to 7 GPa as bone volume fractions increase from 0 to 0.4, with E2 being slightly higher than E3. The dynamic shear modulus, G12, increases from 1.8 to 3.0 GPa, and G31 and G23 increase slightly from 1.8 to 2.2 GPa as bone volume fractions increase from 0 to 0.4. The Poisson's ratios are more sensitive than the Young's moduli and shear moduli to experimental error in the velocity measurements. The mechanically tested modulus (static modulus) in the direction of major trabecular alignment, E1, increases with volume fraction of bone from 2.4 to 4.4 GPa as the bone volume fraction increases from 0 to 0.25; static E2 and E3 values are either equal to or lower than that of pure PMMA.  相似文献   

11.
The aim of this study is to evaluate a newly developed bone plate with low-stiffness material in terms of stress distribution. In this numerical study, 3D finite element models of the bone plate with low-stiffness material and traditional bone plates made of stainless steel and Ti alloy have been developed by using the ANSYS software. Stress analyses have been carried out for all three models under the same loading and boundary conditions. Compressive stresses occurring in the intact portion of the bone (tibia) and at the fractured interface at different stages of bone healing have been investigated for all three types of bone-plate systems. The results obtained have been compared and presented in graphs. It has been seen that the bone plate with low-stiffness material offers less stress-shielding to the bone, providing a higher compressive stress at the fractured interface to induce accelerated healing in comparison with Ti alloy and stainless-steel bone plate. In addition, the effects of low-stiffness materials with different Young's modulus on stress distribution at the fractured interface have been investigated in the newly developed bone-plate system. The results showed that when a certain value of Young's modulus of low-stiffness material is exceeded, increase in stiffness of the bone plate does not occur to a large extent and stress distributions and micro-motions at the fractured interface do not change considerably.  相似文献   

12.
Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0–10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling.  相似文献   

13.
It was proposed that the stresses in the layer of bone immediately beneath a tibial component are an important determinant of fixation durability. Using finite element analysis, (ANSYS), the stresses were determined as a function of the amount of bone resection, the localization or completeness of implant-bone contact, and the interface material. The model was of two-dimensional sagittal slices consisting of quadrilateral elements (1 mm) with a range of seventeen material properties determined by CT scans. Typical prosthesis designs shifted the center of pressure more centrally rather than posteriorly, and thus increased anterior bone stresses. Resection up to 10 mm could actually decrease bone stresses due to an increase in bone surface area as long as complete coverage was obtained. A cement interface or direct metal on bone produced identical stresses. However a 1 mm complian: interface significantly reduced stresses in regions of high elastic modulus gradient. For rigid interfaces, the contact can be irregular, which leads to areas of over and understressing of bone. These conclusions have implications related to implant design.  相似文献   

14.
Bone mass is the most important determinant of the mechanical strength of bones, and spatial structure is the second. In general, the spatial structure and mechanical properties of bones such as the breaking strength are direction dependent. The mean intercept length (MIL) and line frequency deviation (LFD) are two methods for quantifying directional aspects of the spatial structure of bone. Young's modulus is commonly used to describe the stiffness of bone, which is also a direction-dependent mechanical property. The aim of this article is to investigate the relation between MIL and LFD on one hand and Young's modulus on the other. From 11 human mandibular condyles, 44 samples were taken and scanned with high-resolution computer tomography equipment (micro-CT). For each sample the MIL and LFD were determined in 72602 directions distributed evenly in 3D space. In the same directions Young's modulus was determined by means of the stiffness tensor that had been determined for each sample by finite element analysis. To investigate the relation between the MIL and LFD on one hand and Young's modulus on the other, multiple regression was used. On average the MIL accounted for 69% of the variance in Young's modulus in the 44 samples and the LFD accounted for 72%. The average percentage of variance accounted for increased to 80% when the MIL was combined with the LFD to predict Young's modulus. Obviously MIL and LFD to some extent are complementary with respect to predicting Young's modulus. It is known that directional plots of the MIL tend to be ellipses or ellipsoids. It is speculated that ellipsoids are not always sufficient to describe Young's modulus of a bone sample and that the LFD partly compensates for this.  相似文献   

15.
Using Brenner's bond-order potential to represent the interaction of the in-plane C–C bond, an armchair (8,8) single-walled carbon nanotube is investigated by molecular dynamics simulation under axial loading and twist, both for perfect and imperfect lattices introducing an increasing number of Stone–Wales (SW) defects. The Young modulus, shear modulus, tensile strength, shear strength, ductility, stiffness and toughness are computed. All the mechanical characteristics are found to change appreciably by the inclusion of SW defects. Two distinct patterns of fracture mode are observed with odd and even numbers of defects. A clear evidence of the defect–defect interaction is observed when more than one defect is included.  相似文献   

16.
Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.  相似文献   

17.
This study uses fluid–structure interaction (FSI) simulation to investigate the relationship between the dentinal fluid flow in the dental pulp of a tooth and the elastic modulus of masticated food particles and to investigate the effects of chewing rate on fluid flow in the dental pulp. Three-dimensional simulation models of a premolar tooth (enamel, dentine, pulp, periodontal ligament, cortical bone, and cancellous bone) and food particle were created. Food particles with elastic modulus of 2,000 and 10,000 MPa were used, respectively. The external displacement loading $(5\,\upmu \hbox {m})$ was gradually directed to the food particle surface for 1 and 0.1 s, respectively, to simulate the chewing of food particles. The displacement and stress on tooth structure and fluid flow in the dental pulp were selected as evaluation indices. The results show that masticating food with a high elastic modulus results in high stress and deformation in the tooth structure, causing faster dentinal fluid flow in the pulp in comparison with that obtained with soft food. In addition, fast chewing of hard food particles can induce faster fluid flow in the pulp, which may result in dental pain. FSI analysis is shown to be a useful tool for investigating dental biomechanics during food mastication. FSI simulation can be used to predict intrapulpal fluid flow in dental pulp; this information may provide the clinician with important concept in dental biomechanics during food mastication.  相似文献   

18.
The relationship between the stiffness and the mineral content of bone   总被引:8,自引:0,他引:8  
The modulus of elasticity (E) of bone increases very rapidly with increase in mineral content, and in this is atypical of most composite materials. It is proposed that this apparent anomaly is caused by the end-to-end fusion of apatite crystals as the matrix becomes saturated with mineral. There is electron microscopic evidence that this occurs. Calculations using a fairly simple model show that this mechanism could be effective in life.  相似文献   

19.
Angular dependent Young's modulus E phi presented by Bonfield and Grynpas [Nature 270, 453-454 (1977)] was simulated by using the distribution function of the orientation of mineral in plexiform bone introduced on the basis of an X-ray pole figure analysis (XPFA) and a small angle X-ray scattering (SAXS) results. Calculations were performed with the aid of a simple model which expresses well the geometrical characteristic of plexiform bone. Estimated angular dependent Young's modulus in terms of the distribution of mineral orientation reproduced the experimental results. The suitable aspect ratio of bone mineral for the reproduction of the empirical data was a reasonable value compared with the morphological study of bone mineral. It is concluded that the angular dependence of mechanical properties of plexiform bone is explained by the distribution of bone mineral orientation and its morphology.  相似文献   

20.
Computational analysis of trabecular bone normally involves the modeling of (experimental tests of) cored samples. However, the lack of constraint on the sides of the extracted trabecular bone samples limits the information that can be inferred regarding true in situ behavior. Here, the element-by-element voxel-based finite element method was applied via, a custom-written software suite (FEEBE), to a 72 μm resolution model of an ovine vertebra. The difference between the apparent modulus of eight concentric core cylinders when modeled as part of the whole bone (containing 84 × 106 degrees of freedom) and independent of the whole bone was investigated. The results showed that cored trabecular bone apparent modulus depended significantly on the core diameter when modeled as an extracted core (r 2 = 0.975) and as part of a whole bone (r 2 = 0.986). The cause of this result was separated into the side-artifact effect and bone volume fraction (BV/TV) effect. For the independently modeled cores, the apparent modulus of an inner core region of interest varied with increasing thickness of the outer annulus. This was attributed to the side-artifact effect, given that the BV/TV of the core region was constant. Within the whole trabecular structure, the side artifact was eliminated as the entire bone structure was modeled. However, a BV/TV effect influenced the apparent modulus depending on the size of the core selected for determining apparent modulus. Changing the size of the core varied the overall BV/TV of the core, and this significantly (r 2 = 0.999) influences the apparent modulus. Therefore, determining a ‘true’ apparent modulus for trabecular bone was not achievable. The independently modeled cores consistently under-predict the in vivo apparent modulus. It is recommended that if a ‘true’ apparent modulus is required, the BV/TV at which it is required needs to be first determined. Apparent modeling of entire bones at microscale resolution allowed regions of low and high tissue strains to be identified, consistent with patterns of trabecular bone remodeling and resorption reported in literature. The basivertebral vein cavity underwent the highest strains within the entire vertebral body, suggesting that failure might initiate here, despite containing visibly thicker struts and plate trabeculae. Although computationally expensive, analysis of the entire vertebral body provided a full picture of in situ trabecular bone deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号