首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
Human management practices and large detritivores such as earthworms incorporate plant litter into the soil, thereby forming a heterogeneous soil environment from which plant roots extract nutrients. In a greenhouse experiment we investigated effects of earthworms and spatial distribution of 15N-labelled grass litter on plants of different functional groups [Lolium perenne (grass), Plantago lanceolata (forb), Trifolium repens (legume)]. Earthworms enhanced shoot and root growth in L. perenne and P. lanceolata and N uptake from organic litter and soil in all plant species. Litter concentrated in a patch (compared with litter mixed homogeneously into the soil) increased shoot biomass and 15N uptake from the litter in L. perenne and enhanced root proliferation in P. lanceolata when earthworms were present. Growth of clover (T. repens) was rather independent of the presence of earthworms and organic litter distribution: nevertheless, clover took up more nitrogen in the presence of earthworms and exploited more 15N from the added litter than the other plant species. The magnitude of the effects of earthworms and organic litter distribution differed between the plant species, indicating different responses of plants with contrasting root morphology. Aphid (Myzus persicae) reproduction was reduced on P. lanceolata in the presence of earthworms. We suggest that earthworm activity may indirectly alter plant chemistry and hence defence mechanisms against herbivores.  相似文献   

2.
Tsialtas  J.T.  Pritsa  T.S.  Veresoglou  D.S. 《Photosynthetica》2004,42(3):371-376
We related leaf physiological traits of four grassland species (Poa pratensis, Lolium perenne, Festuca valida, and Taraxacum officinale), dominant in a Mediterranean grassland, to their origin and success at community level. From early May to mid-June 1999, four leaf samplings were done. Species originating from poor environments (P. pratensis, F. valida) had low carbon isotope discrimination (), specific leaf area (SLA), leaf water and mineral contents, and net photosynthetic rate on mass basis (P mass) but high chlorophyll content. The reverse traits were evident for the fast-growing species (L. perenne, T. officinale). Under the resource-limiting conditions (soil nitrogen and water) of the Mediterranean grassland, the physiological traits of P. pratensis and F. valida showed to be more adapted to these conditions leading to high species abundance and dominance.  相似文献   

3.
Plants compete for limited resources. Although nutrient availability for plants is affected by resource distribution and soil organisms, surprisingly few studies investigate their combined effects on plant growth and competition. Effects of endogeic earthworms (Aporrectodea jassyensis), root-knot nematodes (Meloidogyne incognita) and the spatial distribution of 15N labelled grass litter on the competition between a grass (Lolium perenne), a forb (Plantago lanceolata) and a legume (Trifolium repens) were investigated in the greenhouse. Earthworms promoted N uptake and growth of L. perenne. Contrastingly, shoot biomass and N uptake of T. repens decreased in the presence of earthworms. P. lanceolata was not affected by the earthworms. We suggest that earthworms enhanced the competitive ability of L. perenne against T. repens. Nematodes increased the proportion of litter N in each of the plant species. Litter distribution (homogeneous vs. patch) did not affect the biomass of any plant species. However, P. lanceolata took up more 15N, when the litter was homogeneously mixed into the soil. The results suggest that endogeic earthworms may affect plant competition by promoting individual plant species. More studies including decomposers are necessary to understand their role in determining plant community structure.  相似文献   

4.
Periods of limited soil water availability are a feature of many temperate pasture systems and these have the potential to modify pasture plant and community responses to elevated atmospheric CO2. Using large pasture turves, previously exposed to elevated CO2 concentrations of 350 or 700 mol mol-1 for 324 d under well-watered conditions the morphological and physiological responses of pasture species growing at these CO2 concentrations were compared when subjected to a soil moisture deficit-and to recovery from the deficit-with those that continued to be well watered.Net leaf photosynthesis of Trifolium repens (C3 legume), Plantago lanceolata (C3) and Paspalum dilatatum (C4) was increased by exposure to elevated CO2, but there was no consistent effect of CO2 on stomatal conductance. At low soil moistures, net photosynthesis declined and stomatal conductance increased in these three species. There was a strong CO2 x water interaction in respect of net photosynthesis; in Trifolium repens, for example, elevated CO2 increased net photosynthesis by approximately 50% under well-watered conditions and this increased to over 300% when soil moisture levels reached their minimum values. Similar values were recorded for both Paspalum dilatatum and Plantago lanceolata. Potential water use efficiency (net photosynthesis/stomatal conductance) was increased by both exposure to elevated CO2 and drought.Leaf water status was measured in three species: Trifolium repens, Paspalum dilatatum and Holcus lanatus (C3). Total leaf water potential (t) and osmotic potential () were decreased by drought, but CO2 concentration had no consistent effect. t and were highest in the C4 species Paspalum dilatatum and lowest in the legume Trifolium repens.In the wet turves, rates of leaf extension of the C3 grasses Holcus lanatus and Lolium perenne at elevated CO2 were frequently higher than those at ambient CO2, but there was no effect of CO2 concentration on the rate recorded in the C4 grass Paspalum dilatatum or the rate of leaf appearance in the legume Trifolium repens. Drought reduced leaf extension rate irrespective of CO2 in all species, but in Holcus lanatus the reduction was less severe at elevated CO2. Immediately after the dry turves were rewatered the leaf extension rate on tillers of Holcus lanatus and Lolium perenne were higher than on tillers in the wet turves, but only at ambient CO2. Consequently, despite the greater leaf extension rate during the soil moisture deficit at elevated CO2, because of the overcompensation after rewatering at ambient CO2, total leaf extension over both the drying and rewetting period did not differ between CO2 concentrations for these C3 grass species. Further investigation of this difference in response between CO2 treatments is warranted given the frequent drying and wetting cycles experienced by many temperate grasslands.  相似文献   

5.
We hypothesised that plant species composition and richness would affect soil chemical and microbial community properties, and that these in turn would affect soil microbial resistance and resilience to an experimentally imposed drying disturbance. We performed a container experiment that manipulated the composition and species richness of common pasture plant species (Trifolium repens, Lolium perenne, and Plantago lanceolata) by growing them in monoculture, and in all the possible two and three-way combinations, along with an unplanted control soil. Experimental units were harvested at four different times over a 16-month period to determine the effect of plant community development and seasonal changes in temperature and moisture on belowground properties. Results showed that plant species composition influenced soil chemistry, soil microbial community properties and soil microbial resistance and resilience. Soil from planted treatments generally showed reduced soil microbial resistance to drying compared to unplanted control soils. Soils from under T. repens showed a higher resistance and resilience than the soils from under P. lanceolata, and a higher resistance than soils from under L. perenne. We suggest that differences across soils in either resource limitation or soil microbial community structure may be responsible for these results. Plant species richness rarely affected soil microbial community properties or soil microbial resistance and resilience, despite having some significant effects on plant community biomass and soil nitrogen contents in some harvests. The effect that treatments had for most variables differed between harvests, suggesting that results can be altered by the stage of plant community development or by extrinsic environmental factors that varied with harvest timing. These results in combination show that soil microbial resistance and resilience was affected by plant community composition, and the time of measurement, but was largely unrelated to plant species richness.  相似文献   

6.

Aims

Plants with precise root foraging patterns can proliferate roots preferentially in nutrient-rich soil patches. When nutrients are distributed heterogeneously, this trait is often competitively advantageous in pot experiments but not field experiments. We hypothesized that this difference is due to belowground herbivory under field conditions.

Methods

We performed pot experiments using seedlings of Lolium perenne (a more precise root foraging species) and Plantago lanceolata (a less precise root foraging species). The experiment had a two-way factorial randomized block design, with nutrient distribution pattern (homogeneous or heterogeneous) and belowground herbivore (present or absent) as the two factors. Each pot contained one seedling of each species.

Results

With no herbivore present, plant biomass was smaller in the heterogeneous nutrient treatment than in the homogeneous treatment in P. lanceolata, but not in L. perenne. Under homogeneous nutrient distribution, plant biomass was lower in both species with a herbivore present than with no herbivore. Under heterogeneous nutrient distribution, biomass reduction due to herbivory occurred only in L. perenne.

Conclusions

Roots of the precise root foraging species were grazed more under the heterogeneous nutrient distribution, suggesting that the herbivore more efficiently foraged for roots in nutrient-rich soil patches.  相似文献   

7.

Climate change models predict a strong reduction of average precipitation, especially of the summer rainfall, and an increase in intensity and frequency of drought events in the Mediterranean region. The research aim was to understand how four dominant grass species (Arrhenatherum elatius, Cynosurus cristatus, Elymus repens, and Lolium perenne) in sub-Mediterranean meadows (central Apennines, Italy) modulate their resource acquisition and conservation strategies to short-term variation of the pattern of summer water supply. During summer 2016, using a randomized block design, we tested the effect of three patterns of summer water supply, differing in water amount and watering frequency, on leaf area, leaf dry mass, specific leaf area (SLA), leaf senescence, and plant height. Our results showed that dominant grass species can modulate their strategies to variation of the pattern of summer water supply, but the response of leaf traits and plant height is mediated by the set of functional characteristics of the species. E. repens and A. elatius, with summer green leaves, lower SLA, later flowering period, and deeper roots, were less influenced by changes in water amount. C. cristatus and L. perenne, which display acquisitive strategies (persistent leaves, higher SLA values), earlier flowering, and shallower roots were more influenced by changes in the pattern of summer water supply. Our results suggest that a short-term decrease in water availability might affect primarily species with trait syndromes less adapted to face summer drought.

  相似文献   

8.
植物功能性状之间的协调性揭示了其适应特定生境的主要策略,而植物早期生长与功能性状可能具有很大关联性。为探讨林下引入耐阴树种的根、茎、叶功能性状协调性及其与生长的关系,研究了杉木人工林林下引入5种常绿阔叶树种(洒金叶珊瑚、杨桐、蚊母树、栀子和海桐)的生长率(树高和地径相对增长率)以及27个根茎叶形态、生理性状指标。结果表明:(1)由主成分分析(Principal component analysis,PCA)可知耐阴树种种间根茎功能性状关联更紧密。此外,种间根、茎性状的变异系数均小于叶面积;(2)耐阴树种种间和种内关键性状与生长率网络关联性差异较大。在种间水平上,生长率与大部分叶性状显著正相关,与根茎性状多为显著负相关;在种内水平上,关键性状与生长率关系网更加复杂;(3)树高相对增长率是种间和种内关系网中心性最高的生长率指标。种间中心性最高的性状指标是叶面积;叶、茎生物量占比和根干物质含量是种内中心性最高的性状指标。但只有叶面积与树高相对增长率在种间和种内均显著正相关,因此,叶面积更适合作为指示林下耐阴树种生长率变化的性状。总体上,耐阴树种叶性状对生长率的调控要强于根茎性状,其中引入较大叶面积的常绿阔叶树种可能更有利于杉木纯林的人促更新和高效复层林的构建。  相似文献   

9.
Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a 13C-CO2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived 13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts) of the recently assimilated 13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of 13C enrichment in 6-species mixtures, while 13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of 13C in the respired CO2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of 13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased community level productivity in grassland systems.  相似文献   

10.
Tao Sun  Zijun Mao  Yingying Han 《Plant and Soil》2013,368(1-2):445-458

Background and aims

Nitrate leaching from intensively cropped soils represents a huge environmental problem. In order to diversify the range of nitrogen management strategies, this investigation is focused on the effects of ribwort plantain, Plantago lanceolata L., and its allelochemicals on soil N mineralization.

Methods

High-performance liquid chromatography was used in this study for phytochemical analysis of the major allelochemicals aucubin, catalpol, and verbascoside. Soil incubation experiments demonstrated a significant suppression of soil N mineralization caused by the incorporation of the iridoid glycoside (IG) aucubin, leaf material of two varieties (P. lanceolata cv. Libor and cv. Arterner), and an aqueous extract of P. lanceolata leaves.

Results

Throughout the growing season, the two varieties conspicuously differed in aucubin and verbascoside contents as well as in leaf dry weight. In soil incubation experiments, incorporated leaf material of both varieties affected long-term low soil nitrate concentrations. Experimental aucubin application resulted in an inhibitory effect on soil N mineralization. This was not true for the IG catalpol. Furthermore, we observed a negative relationship between IG concentrations and inorganic soil nitrogen concentrations when the soil was incubated with aqueous P. lanceolata leaf extract of different concentrations.

Conclusion

This study enforced the hypothesis that allelochemicals of P. lanceolata have an active role in a suppression effect on soil N mineralization. Further research may be necessary to investigate the specific effects of P. lanceolata allelochemicals on the nitrogen cycle.  相似文献   

11.
Carduus nutans L. is an invasive pasture/grassland species which may undergo rapid population growth through positive feedback. Plants ofC. nutans produce a vegetative rosette, and after several months produce stems containing flower-heads, during which time the rosette leaves die and decompose. We investigated the influence ofC. nutans on the nitrogen-fixation ability ofTrifolium repens L. in three experiments. The first experiment was set up in a mixture design, and demonstrated that seedlings ofT. repens were more susceptible to competition with otherT. repens seedlings than toC. nutans seedlings. Nodule numbers and acetylene reduction per unit root, and acetylene reduction per unit nodules were adversely affected by increasingT. repens, but notC. nutans densities. The second experiment was of an additive design, with separate partitions to isolate above-ground and below-ground interference. FloweringC. nutans plants strongly inhibitedT. repens root growth, nodulation and acetylene reduction, but usually only when shoot interference was permitted. This appears to be due to decomposition of rosette leaves, which was maximal at this stage. The third experiment involved monitoring effects of taggedC. nutans individuals againstT. repens in the field. This experiment showed that acetylene reduction was severely influenced by floweringC. nutans (when rosette leaves were decomposing), even when only mild reduction ofT. repens growth was observed, and these effects persisted for some months after theC. nutans plants had died. The results of these experiments in combination suggest that decomposing rosette leaves have a strong potential to inhibitT. repens nitrogen fixation. It appears that allelopathy is involved, since alternative explanations (e.g. root competition byC. nutans; effects ofC. nutans on soil moisture, microbial nutrient immobilisation and light availability; facilitation of herbivores byC. nutans) can be effectively discounted. Although invasive species are often assumed to be associated with soil nitrogen build-up, we believe that some invasive species such asC. nutans have the potential to induce long-term decline of soil nitrogen input.  相似文献   

12.
Temporal heterogeneity of water supply affects grassland community productivity and it can interact with nutrient level and intraspecific competition. To understand community responses, the responses of individual species to water heterogeneity must be evaluated while considering the interactions of this heterogeneity with nutrient levels and population density. We compared responses of four herbaceous species grown in monocultures to various combinations of water heterogeneity, nutrient level, and population density: two grasses (Cynodon dactylon and Lolium perenne), a forb (Artemisia princeps), and a legume (Trifolium repens). Treatment effects on shoot and root biomass were analyzed. In all four species, shoot biomass was larger under homogeneous than under heterogeneous water supply. Shoot responses of L. perenne tended to be greater at high nutrient levels. Although root biomass was also larger under homogeneous water supply, effects of water heterogeneity on root biomass were not significant in the grasses. Trifolium repens showed marked root responses, particularly at high population density. Although greater shoot and root growth under homogeneous water supply appears to be a general trend among herbaceous species, our results suggested differences among species could be found in the degree of response to water heterogeneity and its interactions with nutrient level and intraspecific competition.  相似文献   

13.
Suárez  N. 《Photosynthetica》2003,41(3):373-381
This study assessed the effect of leaf age on construction cost (CC) in the mangrove species Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle growing in their natural habitat. Leaf osmolality values were species-specific, the highest in A. germinans (1 693 mmol kg–1) and the lowest in L. racemosa (1 270 mmol kg–1). In the three species, contents of chlorophyll (a+b) (Chla+b) and nitrogen (N) per unit of leaf area were maximal in adult leaves and tended to decline with age. Leaf mass to leaf area ratio (LMA) and ash content increased during leaf ageing. Similarly, as leaves aged, a significant increase in leaf construction cost per leaf area (CCa) was observed, while per leaf mass (CCm) it remained almost constant, suggesting a sustained production of leaf compounds as leaves became older. CC was positively correlated with LMA and heat of combustion (Hc) per leaf area, suggesting differences among species in the quantity and composition of expensive compounds. Leaf half lifetime (t0.5) showed contrasting values in the three mangrove species (60, 111, and 160 d in L. racemosa, R. mangle, and A. germinans, respectively). Overall, L. racemosa was the species with less expensive leaves to construct while leaves of A. germinans and R. mangle had the highest CCm and CCa, respectively. Leaf longevity was positively correlated with the ratio between CC and maximum photosynthetic rate (P max), clearly showing the existence of a balance between leaf costs and benefits.  相似文献   

14.
Paul Bolton  John L. Harwood 《Planta》1978,139(3):267-272
Lipid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivum L.) leaves. The endogenous levels of acyl lipids and their constituent fatty acids from the same leaf sections were also analysed. The principle chloroplast acyl lipids showed a relative increase in amount with the age of the leaf section. Their content of -linolenic acid also increased whereas there was little change in the amount of this acid in phosphatidylcholine and phosphatidylethanolamine, which are primarily non-chloroplastic. The content of trans-3-hexadecenoic acid in phosphatidylglycerol increased approximately 20-fold between the youngest (basal) and oldest (distal) leaf sections.The incorporation of [14C]acetate was always high into monogalactosyldiacylglycerol, phosphatidylcholine and the neutral lipid (mainly pigments) fractions. With increasing age, the neutral lipids were less well labelled. In three of the plant species but not in barley, phosphatidylglycerol was heavily labelled. Monogalactosyldiacylglycerol usually contained the highest amount of radioactivity in the middle leaf sections. Apart from these generalisations, each plant type had its own specific pattern of radiolabelling.  相似文献   

15.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

16.
The application of nitrogenous fertilizer in March to a whiteclover (cv. Blanca) and perennial ryegrass (cv. S23) sward resultedin a rapid suppression of the clover, relative to clover ina treatment given no added nitrogen. Thereafter, the cloverin both treatments grew more rapidly than the grass and itsproportion of the total leaf area in the mixture increased,as the leaf area index rose to 8. After a second applicationof N in early July, clover was not suppressed to the same extentas in the first growth period. Overall, the photosynthetic capacities of newly expanded cloverlaminae were similar in the two treatments. Clover laminae hadhigher photosynthetic capacities than grass, even in the grass-dominant+ N treatment. Lamina area, petiole length, and the number of live leaves perstolon were similar in the two treatments, indicating that thedifferences in total leaf area were due to the presence of fewerstolon growing points in the + N treatment. Trifolium repens L., white clover, Lolium perenne L., perennial ryegrass, nitrogen, leaf area index, photosynthesis, growth  相似文献   

17.
Alien invasive plants threaten biodiversity, productivity and ecosystem functioning throughout the world. We examined the effect of Fallopia japonica on two native grassland species (Trifolium repens, Lolium perenne). We hypothesized that its negative effects on the native species are dependent on three mechanisms: (i) allelochemicals released and accumulated in soil with a history of invasion, (ii) altered soil biota and (iii) direct resource competition. We measured the response of the native species as the difference in their functional traits when grown under the three conditions. Our results demonstrate that neither allelochemicals nor soil biota from soil with history of F. japonica invasion had measurable effects on either species. Competition with the invader strongly reduced height, biomass and specific leaf area (SLA) of T. repens, while it had a lower effect on L. perenne. Furthermore, our results reveal that F. japonica took advantage of a positive plant–soil and plant–plant interaction. The results show that the prominent mechanism underpinning the invasion success of F. japonica in the grassland was the direct resource competition. This prominent role is also confirmed by the significant interactions between competition, allelochemicals and soil biota from soils with history of invasion of F. japonica on SLA of the native species.  相似文献   

18.
为探索不同种植模式下重金属污染对牧草生理特性的影响,皇竹草(Pennisetum sinese)、黑麦草(Lolium perenne)和龙须草(Juncus effusus)采用单作和间作模式,研究了重金属污染对其叶片光合参数、光合色素和重金属含量的影响.结果表明,与单作相比,间作下皇竹草叶片的叶绿素(Chl)a、C...  相似文献   

19.
查美琴  成向荣  虞木奎  韩有志  汪成  江斌 《生态学报》2021,41(21):8556-8567
了解林木功能性状在不同培育模式下的变异和关联,对揭示林木生态适应性及其生态功能具有重要意义。选取了亚热带地区两种常见人工林树种杉木、大叶榉幼苗为研究对象,设置4种不同栽培模式的盆栽试验:单一杉木(4C),单一大叶榉(4Z)和杉木、大榉树3种混栽模式(1C3Z、2C2Z、3C1Z),研究不同混交比例对其叶、茎、根功能性状的影响。结果表明:(1)杉木总叶面积、叶干物质含量、净光合速率、蒸腾速率和气孔导度在混栽模式下显著减小,而比叶面积显著增大;根长和比根长在不同处理间无显著差异;叶、茎、根生物量和单株总生物量在混栽模式下显著低于4C处理,不同混栽模式之间差异不显著。(2)大叶榉单叶面积在3C1Z处理下最高,总叶面积随大叶榉在树种组成中所占比例的降低而逐渐增大,比叶面积在不同处理间无显著差异,叶干物质含量、净光合速率、蒸腾速率和气孔导度均在2C2Z处理下最大,而瞬时水分利用效率在2C2Z处理下最小;根长在3C1Z处理下显著增大,比根长在不同处理间无显著差异;叶、茎、根生物量和单株总生物量随大叶榉在树种组成中所占比例的降低而逐渐增大。综合来看,杉木和大叶榉混合处理中杉木种间竞争大于种内竞争,而大叶榉相反;随杉木在混栽处理中比例减少,其主要通过增加比叶面积,提高净光合速率,减少茎生物量积累来适应种间竞争关系;而大叶榉随其在混栽处理中比例的减少,显著增加叶面积和根长来提高资源利用率,减少地下资源分配,提高地上茎生物量积累。因此,树种混交比例将显著影响林木功能性状及其生物量积累,选择适宜混交比例对混交林可持续经营具有重要意义。  相似文献   

20.
Summary Rhinanthus minor (Yellow-rattle) was grown in replacement series mixtures with Lolium perenne and Trifolium repens. The hemiparasitic interaction resulted in Relative Yield Totals (the sum of the yields in mixture relative to those in monoculture) considerably above 2. The hemiparasite caused a greater decrease in the yield of the legume and also performed better on the legume, indicating that T. repens was a better host for R. minor than L. perenne under the experimental conditions. When L. perenne and T. repens were grown in binary mixture with or without R. minor the hemiparasite affected considerably the competitive relationship between the two species by selectively parasitizing the legume. The effect of R. minor on competition between the two species was, however, dependent upon the nutrient status of the soil: the higher the level of soil nitrogen the fewer haustorial connections were made with T. repens and the less was the depression in its yield. In another series of experiments in which Festuca rubra, Holcus lanatus and L. perenne were grown in various binary mixtures with or without R. minor it was also shown that the yield of a preferred host was depressed to the advantage of a non-preferred host. It is suggested that the mediation of competition by the hemiparasite provides a mechanism by which it might affect the structure and diversity of plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号