首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because conventional markets value only certain goods or services in the ocean (e.g. fish), other services provided by coastal and marine ecosystems that are not priced, paid for, or stewarded tend to become degraded. In fact, the very capacity of an ecosystem to produce a valued good or service is often reduced because conventional markets value only certain goods and services, rather than the productive capacity. Coastal socio‐ecosystems are particularly susceptible to these market failures due to the lack of clear property rights, strong dependence on resource extraction, and other factors. Conservation strategies aimed at protecting unvalued coastal ecosystem services through regulation or spatial management (e.g. Marine Protected Areas) can be effective but often result in lost revenue and adverse social impacts, which, in turn, create conflict and opposition. Here, we describe ‘ecomarkets’ – markets and financial tools – that could, under the right conditions, generate value for broad portfolios of coastal ecosystem services while maintaining ecosystem structure and function by addressing the unique problems of the coastal zone, including the lack of clear management and exclusion rights. Just as coastal tenure and catch‐share systems generate meaningful conservation and economic outcomes, it is possible to imagine other market mechanisms that do the same with respect to a variety of other coastal ecosystem goods and services. Rather than solely relying on extracting goods, these approaches could allow communities to diversify ecosystem uses and focus on long‐term stewardship and conservation, while meeting development, food security, and human welfare goals. The creation of ecomarkets will be difficult in many cases, because rights and responsibilities must be devolved, new social contracts will be required, accountability systems must be created and enforced, and long‐term patterns of behaviour must change. We argue that efforts to overcome these obstacles are justified, because these deep changes will strongly complement policies and tools such as Marine Protected Areas, coastal spatial management, and regulation, thereby helping to bring coastal conservation to scale.  相似文献   

2.

Phosphorus (P) is an essential macronutrient required for the survival and reproduction of all living organisms. Its inorganic form (Pi) is taken up by the roots to support plant growth and development, and its availability directly determines agricultural productivity. The primary source of P replenishment in agriculture is chemical phosphate (Pi) fertilizers. While application of Pi-fertilizers to croplands ensures high yield agriculture, its intensive use leads to several environmental implications, including loss of soil fertility and pollution of water bodies with runoff fertilizer. Global non-renewable P-reserves are finite and would last for only a few hundred years. Therefore, a holistic approach is needed to combine Pi-use efficient germplasm with the targeted fertilization, agronomically superior fertilizer formulations for better P-management. The latest technologies to reclaim Pi from alternative sources need to be explored. In the present review, we first outline the challenges and environmental consequences of Pi-intensive fertilization, followed by plants' response and adaptive strategies to Pi starvation. Next, we discuss the role of microbes and Pi-nanofertilizer to plant Pi nutrition. Finally, a few cutting-edge technologies and innovative solutions available for reclaiming Pi from waste are argued.

  相似文献   

3.
The diversity of indigenous Azospirillum spp. associated with rice cultivated along the coastline of Tamil Nadu was analyzed. Twelve sites with varying soil characteristics such as salinity, texture, and the host variety were chosen. Of the 402 strains isolated using NFB media, 302 were confirmed to be Azospirillum spp. and subjected to DNA polymorphism analysis using PCR-RFLP of 16S rDNA. They were also screened for their salt tolerance and microaerobic N2-fixing-dependent growth. On species identification, all the strains were found to be A. brasilense, A. lipoferum, or unidentified. On comparing the influence of the previously noted variability on the indigenous population, soil salinity was found to play a dominant role. This was revealed by PCR-RFLP studies and salt tolerance studies. A high association between soil salinity and the distribution of Azospirillum genotypes reveals that soil salinity should be taken into consideration while developing biofertilizers specifically for the coastal agricultural ecosystem.  相似文献   

4.
The environmental deteriorating effects arising from the misuse of pesticides and chemical fertilizers in agriculture has resulted in the pursuit of eco-friendly means of producing agricultural produce without compromising the safety of the environment. Thus, the purpose of this review is to assess the potential of bacteria in termite mound soil to serve as biofertilizer and biocontrol as a promising tool for sustainable agriculture. This review has been divided into four main sections: termite and termite mound soils, bacterial composition in termite mound soil, the role of bacteria in termite mound soil as biofertilizers, and the role of bacteria in termite mound soil as biocontrol. Some bacteria in termite mound soils have been isolated and characterized by various means, and these bacteria could improve the fertility of the soil and suppress soil borne plant pathogens through the production of antibiotics, nutrient fixation, and other means. These bacteria in termite mound soils could serve as a remarkable means of reducing the reliance on the usage of chemical fertilizers and pesticides in farming, thereby increasing crop yield.  相似文献   

5.
Physiological and molecular changes in plants grown at low temperatures   总被引:5,自引:0,他引:5  
Theocharis A  Clément C  Barka EA 《Planta》2012,235(6):1091-1105
  相似文献   

6.
7.
The conservation of scarce land resources is essential to the long-term viability of agriculture in Rwanda. High population density, steep slopes, and abundant rainfall prevail in the highland portions of this African country, making the task of erosion control uncommonly difficult for the peasant farmer. The specific use to which land is put, e.g., cultivation, fallow, pasture, woodlots, and, if it is cultivated, the particular combination of crops grown, can be seen as contributing to both the cause and the solution of the land degradation problem. Based on data from a nationwide survey of over 4800 agricultural fields in Rwanda, this study reviews the extent to which the land use and cropping patterns employed by farmers are appropriately suited, in terms of erosion control, to the topographical and environmental characteristics of their landholdings. Analyses of other aspects of the traditional agricultural system, e.g., variations in relative soil fertility, the use of organic fertilizers, and the location of fields relative to the household, are introduced to help explain why farmers often fail to maximize erosion control through land use and cropping practices. Adjustments to current land use practices that can be expected to reduce soil loss are discussed.  相似文献   

8.
9.
基于滨海盐土5个试验点的土壤含水量和室内土壤表面高光谱反射率,综合分析了350~2500 nm波段范围内土壤含水量与土壤光谱之间的关系,并基于比值光谱指数(RSI)、归一化光谱指数(NDSI)和差值光谱指数(DI)确定了光谱参数,进而构建土壤含水量估测定量模型.结果表明: 滨海盐土原始光谱反射率与土壤含水量呈显著负相关关系,且最大负相关出现在1930 nm(r=0.86)附近.对RSI、NDSI和DI的直线回归方程、幂函数回归方程进行对比,以RSI(R1407,R1459)为自变量构建的土壤含水量指数函数线性回归方程决定系数最大(0.780),标准误较小(0.016),拟合方程为y=0.00001e9.72053x.估测模型能够更好地监测滨海盐土土壤水分状况.基于RSI(R1407,R1459)构建的模型可实现对江苏省滨海盐土土壤水分的精确监测.  相似文献   

10.
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the can...  相似文献   

11.
A pot experiment was conducted to examine the effects of three different arbuscular mycorrhizal fungi, Glomus mosseae, G. deserticola and Gigaspora gergaria, on growth and nutrition of wheat (Triticum aestivium L. cv. Henta) plants grown in saline soil. Under saline condition, mycorrhizal inoculation significantly increased growth responses, nutrient contents, acid and alkaline phosphatases, proline and total soluble protein of wheat plants compared to non-mycorrhizal ones. Those stimulations were related to the metabolic activity of the each mycorrhizal fungus. The localization of succinate dehydrogenase “SDH” (as a vital stain for the metabolically active fungus) in the arbuscular mycorrhizal fungi was variable. In general, mycorrhizal shoot plant tissues had significantly higher concentrations of P, N, K and Mg but lower Na concentration than those of non-mycorrhizal plants. In saline soil, growth and nutrition of wheat plants showed a high degree of dependency on mycorrhizal fungi (especially G. mosseae). The use of the nitroblue tetrazolium chloride method as a vital stain for SDH activity showed that all the structures of mycorrhizal infections in the wheat plant estimated by the trypan blue staining (non-vital stain) were not metabolically active. Interestingly, the reduction in Na uptake along with associated increases in P, N and Mg absorption and high proline, phosphatase activities and chlorophyll content in the mycorrhizal plants could be important for salt alleviation in plants growing in saline soils.  相似文献   

12.
王桃妮  张子莲  全为民 《生态学报》2024,44(7):2706-2716
牡蛎礁生境是指由聚集的牡蛎和其他生物及环境堆积形成的复合生态系统,其固碳和储碳潜力巨大,在海岸带生态系统中发挥着重要的作用。然而,目前对牡蛎礁生境碳源与汇的认识仍存在不足,主要在于牡蛎钙化和呼吸作用都释放CO2,而碳源与汇的评估忽视了钙化、同化和沉积过程带来的整体碳汇价值及牡蛎礁生态系统功能带来的碳汇效应。因此,有必要重新认识牡蛎礁生境的碳汇价值。一方面,牡蛎礁生境的碳源和碳汇需要从牡蛎礁自身的整体碳循环中进行评估,包括牡蛎礁系统中的沉积、钙化、呼吸作用及侵蚀、再悬浮和再矿化作用; 另一方面,牡蛎礁生态系统服务引起的碳汇效应需从牡蛎礁的生态系统服务价值角度进行评估,将生态系统服务价值及碳价值进行关联,从而纳入碳汇核算体系。从实现海岸带可持续增汇角度出发,综述了牡蛎礁生境中碳的源与汇;阐述了容易被人们忽视的微生物在牡蛎礁生境碳汇中的作用;以保护和生态修复为目的,进一步提出可实现牡蛎礁生境最大潜在碳汇的策略,以期为实现海洋负排放及践行"国家双碳战略"提供理论和技术支撑。  相似文献   

13.
A relationship between inoculation and elemental uptake ofMedicago sativa inoculated withRhizobia meliloti (isolated from a saline area) was found. The plant uptake of the elements with atomic number between 19 and 42 was significantly higher in plants grown on inoculated soils, with the exception of molybdenum. Preliminary evidence shows that the concentration of some elements was affected by inoculation.  相似文献   

14.
15.
Zhou J  Li G  Zhou J  Qin P 《应用生态学报》2011,22(4):964-970
Taking seven plots of coastal saline soil under different vegetation cover in North Jiangsu as study sites, this paper studied the seasonal fluctuations of soil basic physicochemical and biological characteristics, and analyzed the relationships between these fluctuations and vegetation cover. In the test plots, there was a greater variability of soil basic physicochemical and biological characteristics. The average soil electrical conductivity was lower in crop plots (0.95 dS m(-1)) than in natural vegetation plots (2.77 dS m(-1)), but parts of the crop plots showed an increased soil electrical conductivity compared with pre-planting. Overall, the soil fertility of the plots was generally at a low level, with the hydrolysable nitrogen content averagely lower than 50 mg kg(-1), available phosphorus content (except fertilized plots) lower than 3 mg kg(-1), and organic matter content less than 1%. Due to fertilization, the soil conditions in crop plots somewhat improved. For the test coastal saline soil, its electrical conductivity and nutrient level were the key factors affecting the vegetation distribution and plant growth, and soil electrical conductivity was most important. There existed close correlations between soil nitrogen and phosphorus contents and soil microbial amount. The seasonal fluctuations of soil characteristics were closely related with vegetation type and human disturbance, being relatively stable under higher vegetation coverage and lesser human disturbance, and dramatic in bare land and castor experimental plots.  相似文献   

16.
17.
The paper focuses on conservation agriculture (CA), defined as minimal soil disturbance (no-till, NT) and permanent soil cover (mulch) combined with rotations, as a more sustainable cultivation system for the future. Cultivation and tillage play an important role in agriculture. The benefits of tillage in agriculture are explored before introducing conservation tillage (CT), a practice that was borne out of the American dust bowl of the 1930s. The paper then describes the benefits of CA, a suggested improvement on CT, where NT, mulch and rotations significantly improve soil properties and other biotic factors. The paper concludes that CA is a more sustainable and environmentally friendly management system for cultivating crops. Case studies from the rice-wheat areas of the Indo-Gangetic Plains of South Asia and the irrigated maize-wheat systems of Northwest Mexico are used to describe how CA practices have been used in these two environments to raise production sustainably and profitably. Benefits in terms of greenhouse gas emissions and their effect on global warming are also discussed. The paper concludes that agriculture in the next decade will have to sustainably produce more food from less land through more efficient use of natural resources and with minimal impact on the environment in order to meet growing population demands. Promoting and adopting CA management systems can help meet this goal.  相似文献   

18.
19.
This paper reviews strategies for manipulating plants and their root-associated microorganisms to improve plant health and productivity. Some strategies directly target plant processes that impact on growth, while others are based on our knowledge of interactions among the components of the rhizosphere (roots, microorganisms and soil). For instance, plants can be engineered to modify the rhizosphere pH or to release compounds that improve nutrient availability, protect against biotic and abiotic stresses, or encourage the proliferation of beneficial microorganisms. Rhizobacteria that promote plant growth have been engineered to interfere with the synthesis of stress-induced hormones such as ethylene, which retards root growth, and to produce antibiotics and lytic enzymes active against soilborne root pathogens. Rhizosphere engineering also can involve the selection by plants of beneficial microbial populations. For example, some crop species or cultivars select for and support populations of antibiotic-producing strains that play a major role in soils naturally suppressive to soil-borne fungal pathogens. The fitness of root-associated bacterial communities also can be enhanced by soil amendment, a process that has allowed the selection of bacterial consortia that can interfere with bacterial pathogens. Plants also can be engineered specifically to influence their associated bacteria, as exemplified by quorum quenching strategies that suppress the virulence of pathogens of the genus Pectobacterium. New molecular tools and powerful biotechnological advances will continue to provide a more complete knowledge of the complex chemical and biological interactions that occur in the rhizosphere, ensuring that strategies to engineer the rhizosphere are safe, beneficial to productivity, and substantially improve the sustainability of agricultural systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号