首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared ferric EDTA, ferric citrate and ferrous ascorbate as iron sources to study iron metabolism in Ostreococcus tauri, Phaeodactlylum tricornutum and Emiliania huxleyi. Ferric EDTA was a better iron source than ferric citrate for growth and chlorophyll levels. Direct and indirect experiments showed that iron was much more available to the cells when provided as ferric citrate as compared to ferric EDTA. As a consequence, growth media with iron concentration in the range 1–100 nM were rapidly iron-depleted when ferric citrate—but not ferric EDTA was the iron source. When cultured together, P. tricornutum cells overgrew the two other species in iron-sufficient conditions, but E. huxleyi was able to compete other species in iron-deficient conditions, and when iron was provided as ferric citrate instead of ferric EDTA, which points out the critical influence of the chemical form of iron on the blooms of some phytoplankton species. The use of ferric citrate and ferrous ascorbate allowed us to unravel a kind of regulation of iron uptake that was dependent on the day/night cycles and to evidence independent uptake systems for ferrous and ferric iron, which can be regulated independently and be copper-dependent or independent. The same iron sources also allowed one to identify molecular components involved in iron uptake and storage in marine micro-algae. Characterizing the mechanisms of iron metabolism in the phytoplankton constitutes a big challenge; we show here that the use of iron sources more readily available to the cells than ferric EDTA is critical for this task.  相似文献   

2.
The severe deficiency of iron or ferric chlorosis is a serious problem of most citrus trees established in calcareous soils, as a result of the low availability of iron in these soils and the poor uptake and limited transport of this nutrient in trees. The objective of this study was to evaluate the response of chlorotic Italian lemon trees (Citrus lemon) to the application of iron compounds to roots and stems. On comparing the effects of aqueous solutions of ferric citrate, ferrous sulphate and FeEDDHA chelate, applied to 20% of the roots grown in soil and sand, of trees that were planted in pots containing calcareous soil, it was observed that the chelate fully corrected ferric chlorosis, while citrate and sulphate did not solve the problem. EDDHA induced the root uptake of iron as well as the movement of the nutrient up to the leaves. With the use of injections of ferric solutions into the secondary stem of adult trees, ferric citrate corrected chlorosis but ferrous sulphate did not. The citrate ion expanded the mobility of iron within the plant, from the injection points up to the leaves, whereas the sulphate ion did not sufficiently improve the movement of iron towards the leaf mesophyll.  相似文献   

3.
不同pH值下丛枝菌根真菌对枳生长及铁吸收的影响   总被引:4,自引:0,他引:4  
王明元  夏仁学 《微生物学报》2009,49(10):1374-1379
摘要:【目的】本文对营养液不同pH值下丛枝菌根(arbuscular mycorrhiza)真菌地表球囊霉(Glomus versiforme)对枳[Poncirus trifoliata]实生苗生长及植株铁营养状况的影响进行了初步研究。【方法】采用盆栽砂培试验,分别施浇pH 5.0、6.0、7.0和8.0的霍格兰营养液(含50 μM Fe-EDTA);常规方法测定植株生长指标;曲利苯蓝染色法测定菌根侵染率;分光光度法测定叶绿素含量和根系三价铁螯合物还原酶活性;原子吸收分光光度法测定叶片钾和活性铁含量;钒  相似文献   

4.
Schizokinen, a citrate-containing dihydroxamate, is a siderophore produced by Bacillus megaterium and Anabaena sp. The involvement of the citrate α-hydroxycarboxylate moiety in iron chelation was investigated by comparing the iron binding behavior of schizokinen with that of acetylschizokinen, a derivative in which the citrate hydroxyl group was modified by acetylation. Ferric schizokinen was found to exhibit an absorption spectrum (λmax = 460 nm) characteristic of a dihydroxamate below pH 2.5, with an isosbestic shift to a citrate dihydroxamate spectrum (λmax = 395 nm) above pH 4. Ferric acetylschizokinen also had a dihydroxamate absorption spectrum (λmax = 465 nm) at low pH. However, its spectral shift (λmax = 420 nm) and intensity above pH 4 were more typical of a ferric trihydroxamate. The molecular weight and electrophoretic mobility of ferric acetylschizokinen are consistent with a dimeric Fe2 (acetylschizokinen)3 structure, whereas ferric schizokinen appears to exist as a monomeric 1:1 complex Despite the differences in molecular weight and α-hydroxycarboxylate coordination, both complexes are effective in promoting iron uptake in Anabaena.  相似文献   

5.
Summary Iron is essential for tumor cell growth. Previous studies have demonstrated that apart from transferrin-bound iron uptake, mammalian cells also possess a transport system capable of efficiently obtaining iron from small molecular weight iron chelates (Sturrock et al., 1990). In the present study, we have examined the ability of tumor cells to grow in the presence of low molecular weight iron chelates of citrate. In chemically defined serum-free medium, most human tumor cell lines required either transferrin (5 μg/ml) or a higher concentration of ferric citrate (500 μM) as an iron source. However, we have also found that from 13 human cell lines tested, 4 were capable of long-term growth in transferrin-free medium with a substantially lower concentration of ferric citrate (5 μM). When grown in medium containing transferrin, both regular and low-iron dependent cell lines use transferrin-bound iron. Growth of both cell types in transferrin medium was inhibited to a certain degree by monoclonal antibody 42/6, which specifically blocks the binding of transferrin to the transferrin receptor. On the contrary, growth of low-iron dependent cell lines in transferrin-free, low-iron medium (5 μM ferric citrate) could not be inhibited by monoclonal antibody 42/6. Furthermore, no autocrine production of transferrin was observed. Low-iron dependent cell lines still remain sensitive to iron depletion as the iron(III) chelator, desferrioxamine, inhibited their growth. We conclude that low-iron dependent tumor cells in transferrin-free, low-iron medium may employ a previously unknown mechanism for uptake of non-transferrin-bound iron that allows them to efficiently use low concentrations of ferric citrate as an iron source. The results are discussed in the context of alternative iron uptake mechanisms to the well-characterized receptor-mediated endocytosis process.  相似文献   

6.
The prevention of chlorosis in flax by high concentrations of molybdenum in a nutrient solution was associated with a delay in the precipitation of iron from ferric citrate, a slower drift of pH towards alkalinity and an increase in the iron content of the root. These effects were greater with ammonium than with sodium molybdate and occurred with solutions started at pH 4.6 but not at pH 6.6.
When FeEDTA was the source of iron, a similar delay in pH drift in the solution and accumulation of iron in the root occurred, but there was no chlorosis or precipitation of iron in the control treatment, so the effect of high molybdenum could not be fully determined.
When ferric chloride was used, high molybdenum did not prevent chlorosis nor delay iron precipitation or cause accumulation of iron in the root, though the rate of pH drift resembled that of solutions containing the organic forms of iron.
Similar results were obtained with peas and soybeans receiving high molybdenum treatment, but suppression of chlorosis was only temporary.
It is suggested that the capacity of molybdenum to offset chlorosis is due to the formation, in acid solution, of a complex with phosphorus which renders iron more available by delaying the formation of ferric phosphate. This seems to occur only when iron is supplied in the organic form.  相似文献   

7.
Iron uptake studies in Bifidobacterium bifidum var. pennsylvanicus were carried out using ferric citrate at iron concentrations above 0.01 mM and pH 7, ferrous iron at concentrations less than 0.01 mM at pH 5. Two ferric iron transport systems were distinguished: the temperature-insensitive polymer, and the temperature-sensitive monomer uptake. Both showed a saturation phenomenon. The transport of ferrous iron at concentrations below 0.01 mM was temperature-dependent, and its affinity for iron was higher than that of a system operating at iron concentrations higher than 0.01 mM. The use of various metabolic inhibitors indicated that ferrous iron transport at pH 5 at both high and low iron concentrations was mediated by transport-type ATPase. Proton gradient dissipators abolished ferrous iron uptakes as well as the ferric monomer uptake. Uptake of the ferric polymer was insensitive to metabolic inhibitors. The functional significance of the various types of iron transport systems may be related to the nutritional immunity phenomenon.  相似文献   

8.
Pseudomonas syringae pv. syringae B301D produces a yellow-green, fluorescent siderophore, pyoverdin(pss), in large quantities under iron-limited growth conditions. Maximum yields of pyoverdin(pss) of approximately 50 mug/ml occurred after 24 h of incubation in a deferrated synthetic medium. Increasing increments of Fe(III) coordinately repressed siderophore production until repression was complete at concentrations of >/= 10 muM. Pyoverdin(pss) was isolated, chemically characterized, and found to resemble previously characterized pyoverdins in spectral traits (absorbance maxima of 365 and 410 nm for pyoverdin(pss) and its ferric chelate, respectively), size (1,175 molecular weight), and amino acid composition. Nevertheless, pyoverdin(pss) was structurally unique since amino acid analysis of reductive hydrolysates yielded beta-hydroxyaspartic acid, serine, threonine, and lysine in a 2:2:2:1 ratio. Pyoverdin(pss) exhibited a relatively high affinity constant for Fe(III), with values of 10 at pH 7.0 and 10 at pH 10.0. Iron uptake assays with [Fe]pyoverdin(pss) demonstrated rapid active uptake of Fe(III) by P. syringae pv. syringae B301D, while no uptake was observed for a mutant strain unable to acquire Fe(III) from ferric pyoverdin(pss). The chemical and biological properties of pyoverdin(pss) are discussed in relation to virulence and iron uptake during plant pathogenesis.  相似文献   

9.
Two kinds of carboxypeptidases (F–I, F–II) were purified from the sarcocarp of watermelon (Citrullus vulgaris, var. Shimao). F–I was not purified to homogeneity. F–II was homogeneous on ultracentrifugal analysis, but a trace of impurity was detected at high concentrations by disc electrophoresis.

F–I was optimally active and stable at pH 5.0~5.5 and was strongly inhibited by DFP and HgCl2, but not by EDTA. The molecular weight and isoelectric point were 89,000 and 4.4, respectively.

F–II was optimally active at pH 5.0 ~ 5.5 and was most stable at pH 5.5 ~ 7.0. It was completely inhibited by DFP and HgCl2, but not by EDTA and 1, 10-phenanthroline, and it hydrolyzed an oligopeptide containing proline, glutamic acid, lysine and several neutral amino acids, sequentially from the C-terminal. The molecular weight and isolelectric point were 110,000 (5.1 S) and 5.0, respectively.

The similarity of enzymatic properties of both the present enzymes to those of other plant carboxypeptidases and pig kidney cathepsin A are discussed.  相似文献   

10.
Summary The uptake of iron by wheat seedlings was investigated using half-strength Hoagland's nutrient solution containing 2.0 M ferric chloride labelled with59Fe. The iron content of root tissue, which includes adsorbed iron, was depressed by the presence in the solution of the synthetic ligands EDTA and polymaleic acid (PMA) and by the natural ligands, humate, fulvate and a water-extractable soil polycarboxylate. The patterns of change in iron content of the shoots were in all cases different from those of the roots and were of two types. EDTA and humate increased the iron content of the shoots to maximum values, at ligand concentrations of 5.0 M and 2.5 mg l–1 respectively, and decreased it at higher concentrations. Fulvate, water-extractable soil polycarboxylate and PMA increased the iron content of the shoots up to the maximum ligand concentrations tested (25 mg l–1). These results are discussed in the light of the likely solution chemistry of iron and the various ligands.  相似文献   

11.
Protein tyrosine nitration, protein oxidation and lipid peroxidation are nitrative/oxidative modification of protein and lipids. In this paper, a BSA (bovine serum albumin)-lecithin liposome system was used to study the nature of different forms of iron, including methemoglobin, hemin and ferric citrate, in catalyzing H2O2-nitrite system to oxidize protein and lipid as well as nitrate protein. It was found that in pH range of 5.0-9.0, in pure BSA solution or pure liposome solution, hemin and methemoglobin catalyzed protein tyrosine nitration and lipid peroxidation were decreased with the increasing of pH, while hemin and methemoglobin catalyzed protein oxidation was significantly and moderately increased, respectively. Lipid completely inhibited hemin catalyzed protein tyrosine nitration but only partially inhibited methemoglobin catalyzed protein tyrosine nitration, and its inhibitory effect on hemin induced protein oxidation was also more pronounced. In addition, BSA showed more efficient in inhibiting hemin and ferric citrate induced lipid peroxidation. At the same condition, ferric citrate was relatively ineffective in all tests. Considering protein tyrosine nitration, protein oxidation and lipid oxidation as overall oxidative damage, these results indicated that methemoglobin is more toxic than hemin and ferric citrate, the degradation procedure of heme containing macromolecules, e.g. hemoglobin to hemin and finally to low molecular weight bounded iron, is step by step detoxification. These results provide fundamental knowledge on oxidative/nitrative of biomolecules in lipid-protein coexistence system.  相似文献   

12.
Summary Viscosities were investigated of solutions of fulvic and humic acid molecular weight fractions of aquatic, terrestrial and microbial origin. Aquatic fulvic and humic acid molecules were, at pH 7, more voluminous than other types of humic compounds of similar molecular weight. It would appear that in low molecular weight non-aquatic humic matter, more inter- than intra-molecular bonding is present, with increasing molecular weight the bonding becomes more intra-molecular. Differences between average molecular weight values as obtained by an ultrafiltration method (Amicon) and by viscosimetry ranged from –18.7 to 18.5%. The largest deviations were in the low molecular weight range (<5,500 daltons). Higher molecular weight humics (in particular humic acids) appeared to have a more elongated structure than lower molecular weight material (in particular fulvic acids). Indications were obtained that on hydration humic moleculars become more elongated.  相似文献   

13.
The effects of small molecular weight complexes with a high affinity for iron on the uptake, accumulation and excretion of iron by the common mussel, Mytilus edulis (L.) have been investigated. Fe(III) complexes of citrate, EDTA and 1,10-phenanthroline increased both the rate of uptake and the total amount accumulated when compared to those for particulate ferric hydroxide in sea water, whereas ferrichrome b and the Fe(III) complexes of aceto- and benzo-hydroxamic acids give a decrease. Increased uptake is, however, compensated for by an increased rate of excretion resulting in an almost constant residence time for this metal. The iron is accumulated principally in the viscera with a smaller but significant proportion in the gills. The effects produced by prior complexation of the iron cannot be correlated with either the strength of binding of the complex to the iron or the exchangeability of the iron with other ligands but may be concerned with the endocytosis, the mechanism of uptake for iron previously shown to occur in Mytilus.  相似文献   

14.
It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km 7.73 × 10−6 M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10 kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500 Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.  相似文献   

15.
1. The influence of humic substances on the association of free inorganic iron and phosphate with material of larger molecular weight was investigated in epilimnetic samples from two humus‐rich lakes of contrasting ionic strength. After modification of the molecular weight distribution of the humic substances in the samples using dialysis and ultrafiltration, the molecular weight distribution of added radioisotopes ( Fe3+ and PO43?) was assessed using gel filtration chromatography.
2. The association of Fe3+ and PO43? with larger molecular weight fractions (>50 000 and 10 000–50 000 Da) was not in general related to the quantity of humic substances of the same molecular weight in the samples. However, the proportions of Fe3+ and PO43? observed in higher molecular weight peaks were strongly correlated to the quantity of humic substances of the same molecular weight in (a) the 10 000–50 000 Da peak in the sample of low ionic strength at pH 5.5 and pH 7.0, and (b) the> 50 000 Da peak in the sample of higher ionic strength at pH 4.0.
3. It was concluded that humic substances promote the association of Fe3+ and PO43? with higher molecular weight fractions primarily by acting as peptizing agents for inorganic colloids containing Fe and P. Association of Fe3+ and PO43? with material of higher molecular weight via the formation of humic substance‐Fe3+–PO43? complexes was identified but only at specific pH and within specific molecular weight ranges for each of the epilimnetic lake water samples studied.  相似文献   

16.
In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 micromol g (dry weight)(-1) day(-1) for three freshwater macrophytes and rates between 15 and 83 micromol (dry weight)(-1) day(-1) for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32 degrees C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments.  相似文献   

17.
Summary The absorption of radium from solution, by plants, has been compared with that of calcium, active strontium being used as a label for the calcium. It was found that radium was preferentially retained by the roots and discriminated against in passage to the shoots. However, the uptake and distribution of radium was influenced by ethylenediaminetetra acetic acid (EDTA) and citrate at the concentrations employed in water culture media to keep iron in solution. There was little discrimination against radium after plants had grown for a week in active nutrient solution when EDTA was present, but in the presence of citrate radium moved less rapidly by a factor of about 0.3. In the early stages of treatment, less than a day, the results with citrate were comparable with those of EDTA, whence it is inferred that the decrease in transfer to the shoots is dependent upon the relative rates at which the two complexes decompose.  相似文献   

18.
Common methods for plant iron determination are based on atomic absorption spectroscopy, radioactive measurements or extraction with subsequent spectrophotometry. However, accuracy is often a problem due to background, contamination and interfering compounds. We here describe a novel method for the easy determination of ferric iron in plants by chelation with a highly effective microbial siderophore and separation by high performance liquid chromatography (HPLC). After addition of colourless desferrioxamine E (DFE) to plant fluids, the soluble iron is trapped as a brown-red ferrioxamine E (FoxE) complex which is subsequently separated by HPLC on a reversed phase column. The formed FoxE complex can be identified due to its ligand-to-metal charge transfer band at 435 nm. Alternatively, elution of both, DFE and FoxE can be followed as separate peaks at 220 nm wavelength with characteristic retention times. The extraordinarily high stability constant of DFE with ferric iron of K=1032 enables extraction of iron from a variety of ferrous and ferric iron compounds and allows quantitation after separation by HPLC without interference by coloured by-products. Thus, iron bound to protein, amino acids, citrate and other organic acid ligands and even insoluble ferric hydroxides and phosphates can be solubilized in the presence desferrioxamine E. The “Ferrioxamine E method” can be applied to all kinds of plant fluids (apoplasmic, xylem, phloem, intracellular) either at physiological pH or even at acid pH values. The FoxE complex is stable down to pH 1 allowing protein removal by perchloric acid treatment and HPLC separation in the presence of trifluoroacetic acid containing eluents. Published online December 2004  相似文献   

19.
Sulfate transport by rat liver lysosomes   总被引:2,自引:0,他引:2  
Sulfate transport was examined using membrane vesicles (pH 7.0 inside) prepared from rat liver lysosomes. Sulfate uptake was dependent upon external pH with increased uptake at lower buffer pH. The Km for uptake was 160 microM at pH 5.0 while at pH 7.0, a lower affinity system with a Km of 1.4 mM was present. The protonophore carbonyl cyanide m-chlorophenylhydrazone increased uptake at pH 5.0 while valinomycin/KCl had no effect. In contrast, at pH 7.0, valinomycin-induced changes in membrane potential stimulated uptake. Countertransport of sulfate at pH 7.0 was inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, N-(4-azido-2-nitrophenyl)-2-aminoethanesulfonic acid, and a variety of anions: SO4(2-) greater than MoO4(2-) greater than Cl- greater than HPO4- greater than HCO3-. Trans-stimulation of sulfate uptake at pH 7.0 was observed with MoO4(2-) and, to a lesser extent, with S2O3(2-) while Cl-, HPO4-, and HCO3- had little effect. However, chloride loading of vesicles resulted in marked stimulation of sulfate uptake at pH 5.0. It appears that sulfate and protons exit lysosomes in exchange for chloride by a specific, pH-regulated anion transport system.  相似文献   

20.
The data obtained in these experiments indicate clearly that unless the necessary precautions are taken to keep the iron of the culture medium in solution the results obtained by varying the H ion concentration will not represent the true effect of this factor on growth. The availability of iron in nutrient solutions has been the subject of numerous recent investigations and it is now known that iron is precipitated at the lower hydrogen ion concentrations, that the iron of certain iron salts is less likely to be precipitated than that of others, and that certain salts of organic acids tend to keep the iron in solution. In general, ferric citrate seems to be the most favorable source of iron. In addition to chemical precipitation, however, it is also possible for the iron to be removed by adsorption on an amorphous precipitate such as calcium phosphate. As this precipitate is frequently formed when nutrient solutions are made alkaline, this may account for the discordant results reported in the literature as to the availability of certain forms of iron. By omitting calcium from the culture solution iron can be maintained in a form available for growth in alkaline solutions by the addition of sodium citrate. In such solutions the maximum growth of Chlorella occurred at pH 7.5. The alkaline limit for growth has not been established as yet. In investigating the availability of iron at varying concentrations of the hydrogen ion, changes in the pH value of the solution during the course of an experiment should also be taken into account. This is especially important in unbuffered solutions. The differential absorption of the ions of ammonium salts may cause a marked increase in the hydrogen ion concentration, which in turn will cause an increase in the solubility of iron. In strongly buffered solutions as used in these experiments this effect is slight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号