首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Levels of allozyme variation and intrapopulation spatial genetic structure of the two terrestrial clonal orchids Liparis kumokiri , a self-compatible relatively common species, and L. makinoana , a self-incompatible rare species, were examined for 17 ( N  = 1875) and four ( N  = 425) populations, respectively, in South Korea. Populations of L. makinoana harboured high levels of genetic variation ( H e = 0.319) across 15 loci. In contrast, L. kumokiri exhibited a complete lack of allozyme variation ( H e = 0.000). Considering the lack of genetic variability, it is suggested that current populations of L. kumokiri in South Korea originated from a genetically depauperate ancestral population. For L. makinoana , a significant deficit of heterozygosity (mean F IS = 0.198) was found in population samples excluding clonal ramets, suggesting that pollen dispersal is localized, generating biparental inbreeding. The significant fine-scale genetic structuring (≤ 2 m) found in a previous study, in addition to the moderate levels of population differentiation ( F ST = 0.107) and the significant relationship between genetic and geographical distances ( r  = 0.680) found here, suggests a leptokurtic distribution of seed dispersal for L. makinoana . Although populations of L. makinoana harbour high levels of genetic variation, they are affected by a recent genetic bottleneck. This information suggests that genetic drift and limited gene flow could be the main evolutionary forces for speciation of a species-rich genus such as Liparis .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 41–48.  相似文献   

2.
Colonizing species are predicted to suffer from reductions in genetic diversity during founding events. Although there is no unique mode of reproduction that is characteristic of successful plant colonizers, many of them are predominantly self-fertilizing or apomictic species, and almost all outcrossing colonizers are self-compatible. Carduus acanthoides comprises a species of disturbed habitats with wind-dispersed seeds that colonizes open spaces of various sizes. Population genetic diversity was expressed by assessing patterns of variation at nine putatively neutral allozyme loci within and among 20 natural populations in its native distribution range in the Czech Republic. Overall, C. acanthoides displayed high levels of genetic diversity compared to other herbaceous plants. The percentage of polymorphic loci was 84.5, with values of 2.37, 0.330, and 0.364 for the mean number of alleles per polymorphic locus ( A ), observed heterozygosity ( H o), and expected heterozygosity ( H e), respectively. There was only weak evidence of inbreeding within populations ( f  = 0.097) and very low genetic differentiation among populations ( θ  = 0.085). Analyses of the data provide strong evidence for isolation-by-distance for the whole study area. Even the colonizing species, C. acanthoides , currently supports a substantial amount of allozyme variation at both the species and population levels.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 596–607.  相似文献   

3.
Allozyme diversity was studied within and among populations of five related taxa of Antirrhinum L. endemic to the Iberian Peninsula ( A. graniticum Rothm. ssp. graniticum , ssp. brachycalyx Sutton and ssp. ambiguum (Lange) Mateu & Segarra, A. boissieri Rothm. and A. onubensis (Fdez. Casas) Fdez. Casas). All of the studied taxa are obligate outcrossing endemic perennial herbs which form isolated populations. However, the taxa vary in range and population sizes, and are found on different soil types. The level and distribution of allozyme diversity differed widely between taxa: A. graniticum ssp. brachycalyx had the lowest level of allozyme diversity (HT = 0.09), whilst the highest level was detected in A. boissieri (HT = 0.25). Total variation was partitioned into within- and among-population variation. The proportion attributable to variation within populations varied from about 67% up to 84.3% and 89.5% in A. graniticum ssp. brachycalyx and A. graniticum ssp. ambiguum , respectively. Both these subspecies also showed little population divergence (GST = 0.10 and 0.09, respectively) and had high levels of estimated gene flow (Nm = 2.18 and 2.62, respectively). These results are discussed in relation to geographical proximity of populations and habitat continuity. Isolation by distance was not detected in any of the studied taxa. This result suggests that divergence among populations is due to random genetic drift.  © 2003 The Linnean Society of London . Biological Journal of the Linnean Society , 2003, 79 , 299–307.  相似文献   

4.
The peculiar bioclimatic and geographic features of Corso–Sardinian islands may provide an ideal scenario for investigating microevolutionary processes, given their large heterogeneity of environments, which could affect dispersal and gene flow among populations, as well as processes of local adaptation. The genetic variation and differentiation among populations of the endemic lizard Archaeolacerta bedriagae were studied by allozyme electrophoresis at 20 presumptive loci. The genetic structure of this species is characterized by relatively high levels of polymorphism and low differentiation among populations. The pattern of genetic differentiation cannot be explained by genetic drift as a function of geographic distance. Genetic distance data show that genetic variation is distributed into three geographically coherent population groups and suggest a recent (Late Pleistocene) origin for the observed geographic fragmentation. The analysis of environmental correlates of allozymic variation indicates a strong correlation of the Idh-1 locus with climatic variables. The frequency of the Idh-1106 allele is negatively correlated with annual temperature, and positively correlated with annual precipitation. In addition, the observed heterozygosity at this locus decreases towards more arid climatic regimes. The results obtained support the assumption of differential selection acting on Idh-1 allozymes under diverse climates. An association between Idh-1 allozymes and local bioclimatic regimes was also observed for the sympatric lizard Podarcis tiliguerta , suggesting a key role for such selective agents on Idh-1 polymorphism in these two Corso–Sardinian lacertids.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 661–676.  相似文献   

5.
Chung MY  Nason JD  Chung MG 《Molecular ecology》2007,16(13):2816-2829
Spatial genetic structure within plant populations is influenced by variation in demographic processes through space and time, including a population's successional status. To determine how demographic structure and fine-scale genetic structure (FSGS) change with stages in a population's successional history, we studied Hemerocallis thunbergii (Liliaceae), a nocturnal flowering and hawkmoth-pollinated herbaceous perennial with rapid population turnover dynamics. We examined nine populations assigned to three successive stages of population succession: expansion, maturation, and senescence. We developed stage-specific expectations for within-population demographic and genetic structure, and then for each population quantified the spatial aggregation of individuals and genotypes using spatial autocorrelation methods (nonaccumulative O-ring and kinship statistics, respectively), and at the landscape level measured inbreeding and genetic structure using Wright's F-statistics. Analyses using the O-ring statistic revealed significant aggregation of individuals at short spatial scales in expanding and senescing populations, in particular, which may reflect restricted seed dispersal around maternal individuals combined with relatively low local population densities at these stages. Significant FSGS was found for three of four expanding, no mature, and only one senescing population, a pattern generally consistent with expectations of successional processes. Although allozyme genetic diversity was high within populations (mean %P = 78.9 and H(E) = 0.281), landscape-level differentiation among sites was also high (F(ST) = 0.166) and all populations exhibited a significant deficit of heterozygotes relative to Hardy-Weinberg expectations (range F = 0.201-0.424, mean F(IS) = 0.321). Within populations, F was not correlated with the degree of FSGS, thus suggesting inbreeding due primarily to selfing as opposed to mating among close relatives in spatially structured populations. Our results demonstrate considerable variation in the spatial distribution of individuals and patterns and magnitude of FSGS in H. thunbergii populations across the landscape. This variation is generally consistent with succession-stage-specific differences in ecological processes operating within these populations.  相似文献   

6.
Dioon edule Lindl. (Zamiaceae) is a cycad endemic to Mexico, that occurs as one species D. edule and the geographical variety D. edule var. angustifolium (Miq.) Miq. Dioon edule has a north to south distribution in eastern Mexico. In this study, we analysed 14 allozymic loci in eight populations of D. edule from its total distribution range by sampling all known populations. Patterns of diversity and genetic variability, within and among populations, were obtained. The mean number of alleles per locus ( A ) was 1.44 and the percentage of polymorphic loci was relatively high ( P  = 54.78). The mean observed ( H O ) and expected heterozygosity ( H E ) were 0.27 and 0.24, respectively. F -statistics revealed an excess of heterozygous genotypes, locally and globally ( F  = −0.17 and f  = −0.27, respectively). The genetic variation explained by differences among populations was only 7.5%. We also detected a negative relationship between genetic diversity and latitude. On average, the gene flow between population pairs was relatively high ( Nm  = 2.98); furthermore, gene flow between population pairs was significantly correlated with geographical distances ( r  = −0.38, P  = 0.025). Therefore, patterns of genetic diversity in D. edule appear to be associated with the post-Pleistocene spread of the species, from its southerly (origin) to its northerly range (derived populations, including its central distribution). The biogeographical and evolutionary aspects of the results of this study are discussed. We recognize Dioon angustifolium Miq. for the northernmost disjunct populations.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 457–467  相似文献   

7.
Three populations of the orchid species Cephalanthera rubra localized on neighbouring mineral islands in the Biebrza National Park (north-east Poland) were examined using 16 allozyme loci. The percentage of polymorphic loci in these C. rubra populations ranged from 25 to 31.3% and the mean number of alleles per polymorphic locus from 1.25 to 1.31. The levels of observed heterozygosity at polymorphic loci were higher than expected for all populations. The overabundance of heterozygotes was noted in every population. The values of fixation indices were highly negative. The genetic differentiation among the three populations was small ( F ST = 0.0173), albeit statistically significant ( P  < 0.001). The level of gene flow varied from 13 to 16. Fourteen multilocus genotypes were found among the 401 ramets sampled from the populations. Only four of them were common for all populations. The frequency of genotypes was different in these three populations of C. rubra . Some of the multilocus genotypes dominated in the given populations, others were found sporadically. Genetic variation within C. rubra populations is mainly the result of small population sizes and reflects the influences of breeding system and type of reproduction. On the other hand, these properties are also connected with habitat conditions.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 99–108.  相似文献   

8.
Comparative analyses of the genetic differentiation in microsatellite markers ( F ST) and leaf morphology characters ( Q ST) of Amphicarpaea edgeworthii Benth. were conducted to gain insight into the roles of random processes and natural selection in the population divergence. Simple sequence repeat analyses on 498 individuals of 19 natural populations demonstrate that a significant genetic differentiation occurs among populations (mean F ST = 0.578), and A. edgeworthii is a highly self-fertilized species (mean selfing rate s  = 0.989). The distribution pattern of genetic diversity in this species shows that central populations possess high genetic diversity (e.g. population WL with H E = 0.673 and population JG with H E = 0.663), whereas peripheral ones have a low H E as in population JD (0.011). The morphological divergence of leaf shape was estimated by the elliptical Fourier analysis on the data from 11 natural and four common garden populations. Leaf morphology analyses indicate the morphological divergence does not show strong correlation with the genetic differentiation ( R  = 0.260, P  = 0.069). By comparing the 95% confidence interval of Q ST with that of F ST, Q ST values for five out of 12 quantitative traits are significantly higher than the average F ST value over eight microsatellite loci. The comparison of F ST and Q ST suggests that two kinds of traits can be driven by different evolutionary forces, and the population divergence in leaf morphology is shaped by local selections.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 505–516.  相似文献   

9.
The population genetic structure of marine species lacking free-swimming larvae is expected to be strongly affected by random genetic drift among populations, resulting in genetic isolation by geographical distance. At the same time, ecological separation over microhabitats followed by direct selection on those parts of the genome that affect adaptation might also be strong. Here, we address the question of how the relative importance of stochastic vs. selective structuring forces varies at different geographical scales. We use microsatellite DNA and allozyme data from samples of the marine rocky shore snail Littorina saxatilis over distance scales ranging from metres to 1000 km, and we show that genetic drift is the most important structuring evolutionary force at distances > 1 km. On smaller geographical scales (< 1 km), divergent selection between contrasting habitats affects population genetic structure by impeding gene flow over microhabitat borders (microsatellite structure), or by directly favouring specific alleles of selected loci (allozyme structure). The results suggest that evolutionary drivers of population genetic structure cannot a priori be assumed to be equally important at different geographical scales. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 31–40.  相似文献   

10.
Habitats are now becoming increasingly fragmented throughout the world due to intense cultivation. As a consequence, populations of some animals with low mobility have become isolated, thus increasing the risk of inbreeding and local extinction. In Britain, weakly flying geometric moths of the genus Epirrita are a good model species with which to test the genetic effects of habitat fragmentation on insect populations. Genetic variation within and between populations of two Epirrita species captured using a network of light traps at two spatial scales (local and national) was assessed using allozyme electrophoresis, with particular reference to the local scale (the 330-ha arable farm estate at Rothamsted, Hertfordshire, in southern Britain). Populations sampled widely in England and Wales displayed low (but statistically significant) levels of genetic differentiation for both species ( F st  = 0.0051–0.0114 and 0.0226 for E. dilutata and E. christyi , respectively). However, analysis of large samples of E. dilutata from four small woods at Rothamsted revealed low ( F st  = 0.0046) but significant differentiation, indicating that gene flow was restricted, even at this very small scale. It was concluded that small intervening patches of farmland (often a few fields width) were enough to prevent genetic homogeneity. The close similarity between more distant Epirrita populations was considered to be a result of historical, rather than recurrent gene flow, as genetic equilibrium between drift and gene flow is unlikely over such scales.  © 2003 The Linnean Society of London . Biological Journal of the Linnean Society , 2003, 78 , 467–477.  相似文献   

11.
Puccinellia pungens (Pau) Paunero is a narrowly endemic grass found in two continental saline lagoons of north-eastern Spain. This rare plant has been classified as 'at risk of extinction' in several national and European catalogues of endangered species. Recent demographic studies indicate that population sizes greatly exceed several million individuals, challenging that threat category. Our genetic analysis, based on allozymes, has shown that in spite of the large population sizes, very low levels of genetic variation were found in P. pungens . Genetic variation was similar in most populations, but the largest, Gallocanta lagoon as a whole, had less variation (35% polymorphic loci, 1.4 alleles/locus, H T = 0.038) than the more restricted Royuela range (45% polymorphic loci, 1.5 alleles/locus, H T = 0.056), suggesting a recent population expansion of the Gallocanta populations from few founder lines. The low genetic distances among populations also suggest a recent divergence. The low genetic variation observed cannot be explained fully by eventual clonal spread and rare seedling establishment in the hypersaline environment. This low variation seems to result from extreme recent population bottlenecks as a consequence of habitat conversion to agricultural fields. In the light of our data, it seems unlikely that reinforcement of populations could increase the genetic diversity of the populations. Hence, conservation efforts should focus on avoiding further habitat loss of this endangered steppe grass species.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 154 , 269–281.  相似文献   

12.
In this study, we analyse genetic structure among ten isolated populations of a sedentary burrowing wolf spider, Geolycosa pikei, collected from Long Island, New York barrier islands. Using allozyme electrophoresis to estimate gene frequencies at 12 loci, only four loci were polymorphic (i.e. Aat, Apk, Gpi, Idh-1), and populations showed little differentiation (mean Fsr=0.020). Contrary to stepping-stone model predictions, the matrix of genetic distances among sites was not significantly associated with the physical distance matrix, which suggests that G. pikei on Long Island barriers does not adhere to a stepping-stone model. Geolycosa pikei may be better dispersers than previously estimated and/or the ephemeral quality of the inlets may not allow for the development of significant inter-populational genetic differences. In addition, geologic evidence suggests that these barriers became relatively stable only 8000 BP. Therefore, these habitats have been only recendy colonized, which may result in low genetic variability and inter-populational differentiation possibly due to genetic drift from repeated and prolonged bottlenecks during recolonization (i.e. founder events).  相似文献   

13.
In the present study the population genetic structure of the terrestrial snail Pomatias elegans was related to habitat structure on a microspatial scale. The genetic variability of 1607 individuals from 51 sampling sites in five different populations in Provence, France, was studied with an allozyme marker using population genetic methods, Mantel tests and spatial autocorrelation techniques were applied to different connectivity networks accounting for the structural features of the landscape. It is suggested that the population structure is, to a large extent, a function of the habitat quality, quantified as population density, and of the spatial arrangement of the habitat in the landscape and not of the geographical distance per se . In fragmented habitats, random genetic drift was the prevailing force for sampling sites separated by a few hundred meters.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 565–575.  相似文献   

14.
1. The recent arrival and explosive spread of the zebra mussel, Dreissena polymorpha (Pallas), in Ireland provided a rare opportunity to study the population genetics of an invasive species.
2. Eight polymorphic allozyme loci ( ACO-1, ACO-2 , EST-D, GPI, IDH-2, MDH, OPDH and PGM ) were used to investigate genetic diversity and population structure in five Irish populations, and the results were compared with those from a previous microsatellite study on the same samples.
3. The mean number of alleles per locus (2.7 ± 0.1) was similar to the mean for the same loci in European populations, suggesting that Irish founder populations were large and/or multiple colonization events took place after foundation. A deficiency of heterozygotes was observed in all populations, but was uneven across loci.
4. Pairwise comparisons, using Fisher's exact tests and F ST values, revealed significant genetic differentiation among populations. The overall multilocus F ST estimate was 0.118 ± 0.045, which contrasted with an estimate of 0.015 ± 0.007 from five microsatellite loci on the same samples in a previous study.
5. Assuming that microsatellites can be used as a neutral baseline, the discordant results from allozymes and microsatellites suggest that selection may be acting on some allozyme loci, specifically ACO-1, ACO-2 , IDH-2 and MDH, which contributed most to the significant differentiation between samples.  相似文献   

15.
1. Previously, the Yangtze River connected thousands of shallow lakes which together formed a potamo-lacustrine system capable of sustaining a rich variety of submerged macrophytes.
2.  Potamogeton malaianus is one of the dominant submerged macrophytes in many lakes of this area. Genetic variation and population structure of P. malaianus populations from ten lakes in the potamo-lacustrine system were assessed using inter-simple sequence repeat markers.
3. Twelve primer combinations produced a total of 166 unambiguous bands of which 117 (70.5%) were polymorphic. Potamogeton malaianus exhibited a moderate level of population genetic diversity ( P P = 70.5%, H E = 0.163 and I =  0.255), as compared with that of plants in the same habitat and range. The main factors responsible for this moderate value were the plant's mixed breeding system (both sexual and asexual) and the hydrological connectivity among habitats.
4.  F statistics, calculated using different approaches, consistently revealed a moderate genetic differentiation among populations, contributing about 20% of total genetic diversity. An estimate of gene flow (using F ST) suggested that gene flow played a more important role than genetic drift in the current population genetic structure of P. malaianus ( Nm  = 1.131).
5. The genetic diversity of P. malaianus did not increase downstream. A high level of linkage–disequilibrium at the whole population level suggested that metapopulation processes may affect genetic structure. The migration pattern of P. malaianus was best explained by a two-dimensional stepping stone model, indicating that bird-mediated dispersal could greatly influence gene movements among lakes.  相似文献   

16.
The aim of this study was to assess potential post-bottleneck temporal genetic differentiation following the reintroduction of the species into the Białowieża Forest. Variability of 12 polymorphic microsatellite markers was analysed for 178 individuals born between 1955 and 2005, divided by birth year into five temporal groups. Low overall allelic richness (AR) per locus (AR = 2.0) and a low overall expected heterozygosity (HE = 0.28) were observed. The overall F IS was not significantly different from zero. The mean F IS values were, however, significantly different from zero for individuals born between 1955 and 1965 ( F IS = 0.19). A Bayesian computation was used to estimate effective population size (Ne) for each temporal group. We observed relatively small values of Ne ranging from 7.9 to 28.4. The low Ne values confirm that, despite a rapid growth of the bison population following the founder event, Ne increased only slowly.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 801–809.  相似文献   

17.
Nine populations of giant clams, Tridacna maxima, from six islands of French Polynesia were screened for allozyme variation at ten polymorphic loci. The genetic structure of populations of T. maxima were studied at different spatial scales: within an island, between islands of the same archipelago and between archipelagos. Significant genetic differences were observed only between populations from different archipelagos, and genetic differentiation was correlated with geographical separation. However, these results were only supported by a single locus, PEP * and all other loci were homogeneous between studied populations. According to Lewontin & Krakauer's model, the genetic structure can be explained by selection. The selective factors most likely depend on the respective habitat of each archipelago. We also studied genotype–phenotype correlation using the colour of the clam mantle, and did not find any relationship between the mantle colour and the genetic structure of the individuals.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 221–231.  相似文献   

18.
Temporal evolution of genetic variability may have far-reaching consequences for a diverse array of evolutionary processes. Within the polders of the Bay of Mont-Saint-Michel (France), populations of the land snail Helix aspersa are characterized by a metapopulation structure with occasional extinction processes resulting from farming practices. A temporal survey of genetic structure in H . aspersa was carried out using variability at four microsatellite loci, in ten populations sampled two years apart. Levels of within-population genetic variation, as measured by allelic richness, H e or F is , did not change over time and similar levels of population differentiation were demonstrated for both sampling years. The extent of genetic differentiation between temporal samples of the same population established (i) a stable structure for six populations, and (ii) substantial genetic changes for four populations. Using classical F -statistics and a maximum likelihood method, estimates of the effective population size ( N e) illustrated a mixture of stable populations with high N e, and unstable populations characterized by very small N e estimates (of 5–11 individuals). Owing to human disturbances, intermittent gene flow and genetic drift are likely to be the predominant evolutionary processes shaping the observed genetic structure. However, the practice of multiple matings and sperm storage is likely to provide a reservoir of variability, minimizing the eroding genetic effects of population size reduction and increasing the effective population size.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 89–102.  相似文献   

19.
Ancient managed landscapes provide ideal opportunities to assess the consequences of habitat fragmentation on the patterns of genetic diversity and gene flow in long-lived plant species. Using amplified fragment length polymorphism (AFLP) and allozyme markers, we quantified seed-mediated gene flow and population genetic diversity and structure in 14 populations of Myrtus communis (myrtle), a common endozoochorous shrub species of forest patches in lowland agricultural Mediterranean areas. Overall, allozyme diversity for myrtle was low (P95   =   25%; A   =   1.411; He = 0.085) compared to other known populations, and a significant portion of populations (57%) had lower levels of allelic diversity and/or heterozygosity than expected at random, as shown by simulated resampling of the whole diversity of the landscape. We found significant correlations between allozyme variability and population size and patch isolation, but no significant inbreeding in any population. Genetic differentiation among populations for both allozyme and AFLP markers was significant (ΦST = 0.144 and ΦST = 0.142, respectively) but an isolation-by-distance pattern was not detected. Assignment tests on AFLP data indicated a high immigration rate in the populations ( ca. 20–22%), likely through effective seed dispersal across the landscape by birds and mammals. Our results suggest that genetic isolation is not the automatic outcome of habitat destruction since substantial levels of seed-mediated gene flow are currently detectable. However, even moderate rates of gene flow seem insufficient in this long-lived species to counteract the genetic erosion and differentiation imposed by chronic habitat destruction.  相似文献   

20.
Allozyme Diversity in Populations of Cymbidium goeringii (Orchidaceae)   总被引:1,自引:0,他引:1  
Abstract: Using 14 allozyme loci, we investigated levels of genetic diversity within populations, and degree of genetic divergence among 24 populations of Cymbidium goeringii (Orchidaceae) in Korea and Japan. Cymbidium goeringii maintains high levels of genetic diversity both at population (mean expected heterozygosity, H e = 0.238) and species levels (0.260). Means of H e found in 24 populations were not significantly different from each other. About 90 % of the total variation in the species is common to all populations (mean G ST = 0.108). No unique allele was found in any population. The indirect estimate of gene flow based on the mean G ST was high ( Nm = 2.06). Nei's genetic identities for pairs of populations had high values (mean = 0.974 [SD = 0.013]). The Mantel-Z test showed a significant correlation between genetic distance and geographic distance. However, the mean G ST value between 17 populations in Korea and seven Japanese populations was relatively low (0.029), even though the land connection between the southern Korean peninsula and southern Japanese archipelagos has not existed since the middle Pleistocene. Large numbers of small seeds of C. goeringii might travel long distances by wind from populations to populations both in Korea and Japan, increasing genetic diversity within populations and maintaining low genetic differentiation among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号