首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fishery independent underwater visual census technique was used to assess the effects of fishing on the diversity, biomass and trophic structure of the diurnally active non-cryptic reef-associated fish communities of the Seychelles. One hundred and thirty four species associated with three significantly different types of reef habitat were censused at one unfished ground and in six fishing grounds subject to different fishing intensity and the biomass of several species targeted by the fishery. The diversity of families containing target species (lutjanidae, lethrinidae) was significantly higher at unfished and lightly fished sites as was the total biomass of the fish community and the biomass of piscivorous, piscivorous/invertebrate feeding and herbivorous trophic groups. However, there was no indication that the biomass of non-target species increased in response to the removal of their predators by fishing. The findings of this study are significant for fishery managers because they suggest that the intensive differential cropping of top predators will not necessarily lead to increases in the biomass and productivity of their prey.  相似文献   

2.
Numbers and biomass of piscivorous fish and their predation on other fish may often be high in undisturbed coral reef communities. The effects of such predation have sometimes been studied by removal of piscivores (either experimentally or by fishermen). Such perturbations have usually involved removal of large, highly vulnerable, mobile piscivores that are often actively sought in fisheries. The effects of fishing on smaller, demersal, semi-resident piscivores have been little studied. We studied such effects on the fish communities of patch reefs at Midway atoll by experimentally removing major resident, demersal, piscivorous fishes. First, four control reefs and four experimental reefs were selected, their dimensions and habitats mapped, and their visible fish communities censused repeatedly over 1 year. Census of all control and experimental reefs was continued for the following 39 months, during which known piscivores were collected repeatedly by hand spearing. Records were kept of catch and effort to calculate CPUE as an index of predator density. Spearfishing on the experimental reefs removed 2504 piscivorous fish from 12 families and 43 taxa (mostly species). The species richness of the catch did not show an overall change over the duration of the experiment. Spearman rank correlation analysis showed some unexpected positive correlations for density in numbers and biomass of major fished piscivorous groups (especially lizardfish) over the experiment. Only two relatively minor fished piscivorous taxa declined in abundance over the experiment, while the overall abundance of piscivores increased. Visual censuses of fish on the experimental reefs also failed to show reduction of total piscivores over the full experimental period. No significant trend in the abundance of lizardfish censused over the full period was apparent on any of the control reefs. The high resilience of piscivores on these experimental reefs to relatively intense fishing pressure could result from their protracted recruitment seasons, high immigration rates, cryptic habits, or naturally high abundances. A major factor was the high immigration rates of lizardfish, replacing lizardfish and other less mobile piscivores removed from the reefs by spearing. On the fished reefs, the removed lizardfish population replaced itself >20 times during the experiment; other piscivorous taxa replaced themselves only 5 times.  相似文献   

3.
Marine Protected Areas (MPAs) are known to enhance diversity, density and biomass of coral reef fishes and to modify the size and trophic structures of these fish assemblages. Opening to fishing has the opposite effects, but on a much shorter time scale. The present study compares the evolution of the fish assemblages of two adjacent reef zones, both initially MPAs, one of them being afterwards opened to fishing. The study was conducted on Aboré Reef, a New Caledonian barrier reef (SW Pacific) which constituted a 148 km2 marine protected area, of which 69 km2 are within the lagoon. Two surveys of a coral reef fish assemblage, using underwater visual censuses, were performed, the first one was conducted in July 1993 following 5 years of protection from fishing, the second one was conducted in July 1995; part of the reef having been opened to fishing activity in September 1993. This study examined the effects of two factors on these fish communities: time (1993 vs. 1995) and zone (reefs protected from fishing vs. unprotected reefs); the interaction of these two factors indicating an effect of either protection or opening to fishing. Diversity (species/transect), density and biomass were tested for all species together (377 species), then according to diet, size and commercial use. There was a significant decrease over time of most values in both fished and unfished areas, the decrease being greater in the zone opened to fishing. The magnitude of decrease over time was within the range of known time variations from other studies in New Caledonia and other Pacific locations. However, this decrease was so large that it prevented the detection of effects linked to protection. Only some minor effects could be detected for 16 species with no specific pattern according to diet, size or use. The density and biomass of species of low commercial value were also affected by opening to fishing. Relative changes in diversity could be better detected than relative changes in density or biomass. This study demonstrates that on a short-term basis (2 years), natural variations can be of larger magnitude than changes that may be induced by management options, especially when fishing pressure is not very high.  相似文献   

4.

Background

Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations.

Methodology/Principal Findings

Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species.

Conclusions/Significance

Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.  相似文献   

5.
Anthropogenic activities such as land‐use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific‐wide and regional (1,000s–10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human‐induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both “top‐down” (fishing of predators) and “bottom‐up” (degradation of benthic communities) contexts.  相似文献   

6.
High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year), spatially extensive (∼115,000 kms2) dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.  相似文献   

7.
8.
Coral reef fishes differ in their intrinsic vulnerability to fishing and rates of population recovery after cessation of fishing. We reviewed life history-based predictions about the vulnerability of different groups of coral reef fish and examined the empirical evidence for different rates of population recovery inside no-take marine reserves to (1) determine if the empirical data agree with predictions about vulnerability and (2) show plausible scenarios of recovery within fully protected reserves and periodically-harvested fishery closures. In general, larger-bodied carnivorous reef fishes are predicted to be more vulnerable to fishing while smaller-bodied species lower in the food web (e.g., some herbivores) are predicted to be less vulnerable. However, this prediction does not always hold true because of the considerable diversity of life history strategies in reef fishes. Long-term trends in reef fish population recovery inside no-take reserves are consistent with broad predictions about vulnerability, suggesting that moderately to highly vulnerable species will require a significantly longer time (decades) to attain local carrying capacity than less vulnerable species. We recommend: (1) expanding age-based demographic studies of economically and ecologically important reef fishes to improve estimates of vulnerability; (2) long term (20–40 years), if not permanent, protection of no-take reserves to allow full population recovery and maximum biomass export; (3) strict compliance to no-take reserves to avoid considerable delays in recovery; (4) carefully controlling the timing and intensity of harvesting periodic closures to ensure long-term fishery benefits; (5) the use of periodically-harvested closures together with, rather than instead of, permanent no-take reserves.  相似文献   

9.
Large-scale fishing is mostly conducted using towed gears that reduce the biomass and diversity of benthic invertebrates. However, it is impossible to differentiate between the physical disturbance effect of towed gears from the effect of fish predator removal upon benthic invertebrate communities. Here we explore the impact of fish removal alone on the community structure of small motile coral reef invertebrates (epifauna) along a subsistence fishing intensity gradient in the Lau group, Fiji. We deployed settlement plates at three areas in each of six fishing grounds and examined the density and class richness of the motile epifaunal communities and the associated algal communities in relation to the structure of fish and benthic communities. Motile epifaunal density was unrelated to fishing intensity. However, at smaller inter-area scale (0.5-10 km) motile epifaunal density was negatively related to plate algal biomass, whereas at the larger inter-fishing-ground scale (4-180 km) motile epifaunal density was positively related to the rugosity (substrate complexity) of the surrounding benthos. The class richness and diversity (Margalef's d) of motile epifaunal communities were negatively related to fishing intensity, but unrelated to grazing intensity, rugosity or algal biomass at either scale. Benthic community structure varied significantly with fishing intensity; hard-coral cover was lower and turf-algal cover was higher at high fishing pressure. The variation in benthic community structure was associated with variation in fish community structure, which in turn varied with fishing intensity. Motile epifaunal community structure upon plates was linked to the structure of the surrounding benthic community, but was not directly linked to the plate algal community. We suggest the decline in richness of the motile epifauna community along the fishing gradient is attributable to either to exploiter-mediated coexistence or the reduction in ‘habitat quality’ of the surrounding benthos. At the large spatial scale substrate complexity is the key determinant of motile epifaunal density, suggesting predation by fishes plays an important structuring role at this scale. Assuming that rugosity is inversely related to predation risk then this study represents the first evidence for spatial-dependence on the top-down (predation) vs. bottom-up (algal biomass) control of community structure. We argue fisheries exploitation, in the absence of a physical disturbance can negatively influence motile epifaunal community structure at large spatial scales.  相似文献   

10.
This study examined how riverine inputs, in particular sediment, influenced the community structure and trophic composition of reef fishes within Rio Bueno, north Jamaica. Due to river discharge a distinct gradient of riverine inputs existed across the study sites. Results suggested that riverine inputs (or a factor associated with them) had a structuring effect on fish community structure. Whilst fish communities at all sites were dominated by small individuals (<20 cm), diversity and total biomass were reduced with increased proximity to the river mouth. The abundance of all fishes, but particularly small-bodied, juvenile and herbivorous fishes was reduced in turbid water when compared to clear-water sites. Results strongly suggest that fluvial sediment inputs may play an important role in structuring fish assemblages even under intense fishing pressure.  相似文献   

11.
In this study, fishes and habitat attributes were quantified, four times over 1 year, on three reefs within four regions encompassing a c. 6° latitudinal gradient across south-western Australia. The variability observed was partitioned at these spatio-temporal scales in relation to reef fish variables and the influence of environmental drivers quantified at local scales, i.e. at the scale of reefs (the number of small and large topographic elements, the cover of kelp, fucalean and red algae, depth and wave exposure) and at the scale of regions (mean and maximum nutrient concentrations and mean seawater temperature) with regard to the total abundance, species density, species diversity and the multivariate structure of reef fishes. Variation in reef fish species density and diversity was significant at the regional scale, whereas variation in the total abundance and assemblage structure of fishes was also significant at local scales. Spatial variation was greater than temporal variation in all cases. A systematic and gradual species turnover in assemblage structure was observed between adjacent regions across the latitudinal gradient. The cover of red algae within larger patches of brown macroalgae (a biological attribute of the reef) and the number of large topographic elements (a structural attribute of the reef) were correlated with variation observed at local scales, while seawater temperature correlated with variation at the scale of regions. In conclusion, conservation efforts on reef fishes need to incorporate processes operating at regional scales with processes that shape local reef fish communities at local scales.  相似文献   

12.
1. We tested the hypothesis that indirect food web interactions between some common, invertivorous fishes and their prey would positively affect growth of an algivorous fish species. Specifically, we predicted that orangethroat darter (Etheostoma spectabile) would increase periphyton biomass via a top‐down pathway, indirectly enhancing growth of the algivorous central stoneroller minnow (Campostoma anomalum). Moreover, we predicted that sand shiner (Notropis stramineus) would increase periphyton biomass via a bottom‐up pathway and indirectly enhance growth of the stoneroller minnow. 2. In an 83‐day experiment in large, outdoor, stream mesocosms, we stocked two fish species per mesocosm (stoneroller and either darter or shiner), estimated the effects of the invertivorous and grazing fishes on periphyton biomass and estimated growth of the algivorous fish. 3. The darter consumed grazing invertebrates, indirectly increasing periphyton biomass. The shiner consumed terrestrial insects as predicted, but it did not affect periphyton biomass. 4. In support of our hypothesis, the darter indirectly enhanced stoneroller growth. As predicted, stonerollers consumed the increased periphyton in streams with darters, resulting in greater growth, condition and gut fullness compared to streams without darters. No indirect interaction was observed between stonerollers and shiners. 5. Our study suggests that some invertivorous fish species can positively affect growth of algivorous fishes through indirect food web interactions. Thus, in stream communities, it is possible that the loss of a single, invertivorous fish taxon could have negative consequences on algivorous fish populations via the removal of positive indirect food web interactions.  相似文献   

13.
为更好地保护和管理西沙永兴岛附近海域珊瑚礁鱼类,于2020—2021年对永兴岛上岸渔获物进行了调查研究,分析了鱼类群落结构组成及其变化和演替特征。结果表明:调查共发现永兴岛附近海域珊瑚礁鱼类101种,隶属于5目21科,以鲈形目鱼类最多,占总种类的84.16%,生物量超总渔获物的90%;科级水平鹦嘴鱼科鱼类最多,达21种,生物量超总渔获物的45%。28种珊瑚礁鱼类是永兴岛附近海域主要捕捞对象,占总渔获物的80%以上。永兴岛附近海域珊瑚礁鱼类呈现过度捕捞,一是主要渔获物中的中大型鱼类均重偏小;二是本海域个体体型最大的鱼类出现较多消亡;三是肉食性鱼类大量消亡;四是植食性鱼类生物量占比超过了肉食性鱼类。永兴岛附近海域珊瑚礁鱼类已经演替到以植食性鱼类为主导的生态系统;大量海胆的出现,表明了这一珊瑚礁生态系统在进一步衰退,向以海胆为主导的生态系统演变。保护西沙永兴岛附近海域珊瑚礁鱼类已经刻不容缓,需要严格地控制本海域的捕捞强度。  相似文献   

14.
Fisheries exploitation represents a considerable threat to coral reef fish resources because even modest levels of extraction can alter ecological dynamics via shifts of stock size, species composition, and size-structure of the fish assemblage. Although species occupying higher trophic groups are known to suffer the majority of exploitative effects, changes in composition among lower trophic groups may be major, though are not frequently explored. Using size-based biomass spectrum analysis, we investigate the effects of fishing on the size-structure of coral reef fish assemblages spanning four geopolitical regions and determine if patterns of exploitation vary across trophic groups. Our analyses reveal striking evidence for the variety of effects fisheries exploitation can have on coral reef fish assemblages. When examining biomass spectra across the entire fish assemblage we found consistent evidence of size-specific exploitation, in which large-bodied individuals experience disproportionate reductions. The pattern was paralleled by and likely driven by, strongly size-specific reductions among top predators. In contrast, evidence of exploitation patterns was variable among lower trophic groups, in many cases including evidence of reductions across all size classes. The breadth of size classes and trophic groups that showed evidence of exploitation related positively to local human population density and diversity of fishing methods employed. Our findings highlight the complexity of coral reef fisheries and that the effects of exploitation on coral reefs can be realized throughout the entire fish assemblage, across multiple trophic groups and not solely restricted to large-bodied top-predators. Size-specific changes among fishes of lower trophic groups likely lead to altered ecological functioning of heavily exploited coral reefs. Together these findings reinforce the value of taking a multi-trophic group approach to monitoring and managing coral reef fisheries.  相似文献   

15.
Base‐line data were collected to examine the possible effects of the aquarium trade on Amazon fish populations in differentially‐fished locations in the Departmento of Loreto, Peru. Fish abundance, species diversity (richness) and biomass were quantified at three locations with differential fishing pressure, including the Rio Nanay (high pressure), Rio Apayacu and Rio Arambassa (medium) and Rio Yanayacu –Pacaya‐Samiria National Reserve (low). Seining results indicated that the location with the highest fishing pressure had reduced fish abundance, species diversity and biomass compared to the other locations. A similar trend was seen using minnow traps. There was no significant difference in abundance, diversity and biomass between the medium and low fishing pressure locations. Habitat differences (pH and conductivity) among the three locations accounted for <13% of the observed variation, and thus it seemed possible that some of the decline in the Rio Nanay location could be tentatively attributed to increased fishing pressure. Although effects of pollution and habitat alteration could not be ruled out, this is one of the first studies to provide quantitative data on the effect of the freshwater aquarium trade on wild fish populations. While results suggest success in the protection of fishes for the aquarium trade in Pacaya‐Samiria National Reserve, it also may be sustainable to establish limited levels of fishing, as was found in the medium fishing pressure locations, in order to promote economic opportunities and incentives for habitat preservation for indigenous communities.  相似文献   

16.
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.  相似文献   

17.
Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.  相似文献   

18.
Increased habitat complexity is supposed to promote increased diversity, abundance and biomass. This study tested the effect of the macroalgal cover on temperate reef fishes by mimicking macroalgae on artificial reefs in NW Sicily (Mediterranean Sea). Macroalgal cover affected reef fishes in different ways and independently of intrinsic temporal trends. The fish assemblages of manipulated and control artificial reef units differed in the relative abundances of the associated species, but little in species composition. In line with studies in seagrass habitats, fishes were most abundant in reefs covered by artificial macroalgae. Three species (Boops boops, Serranus scriba and Symphodus ocellatus) exhibited consistently greater abundance on vegetated reef units than on control reef units. The total number of species and the abundance of three particular species (S. scriba, S. ocellatus and Thalassoma pavo) displayed temporal trends which were independent on short and large temporal scales. Only fish total biomass and one species (Spicara flexuosa) displayed strong effects of interaction among the experimental factors. Mechanisms to explain these findings are discussed from observational evidence on habitat use and interactions among multiple species. This study highlights that manipulative experiments involving repeated sampling of fish in artificial habitats appear to be a valid approach to study fish-habitat relationships in fluctuating environments. It is also concluded that macroalgae mimics may serve as a tool for restoring lost marine vegetated habitats when current human-induced conditions prevent the recovery of pristine macroalgal stands.  相似文献   

19.
Synopsis Relationships between quantitative measures of habitat type and the biomass of Chaetodon, Scarus and Parupeneus species were investigated across 35 reef sites in the Inner Seychelles Group. Multiple regression was used to determine the proportion of variance in biomass between sites which could be explained by depth, exposure, vertical relief, topographic complexity, live coral cover, coral rubble cover, rock cover, sand cover, underlying carbonate substrate, underlying sand substrate, underlying rock substrate and an index of fishing intensity. A significant proportion of the variance in biomass was explained by habitat variables and the index of fishing intensity for 7 of 12 Chaetodon species (23–52% of variance explained), 3 of 6 Parupeneus species (33–40%), and 10 of 13 Scarus species (14–46%). Within genera, different groups of habitat variables explained the variance in biomass for different species and, of the variables studied, only the proportion of underlying sand substrate failed to explain a significant proportion of the variance in biomass for any species. Quantitative relationships between the biomass of Chaetodon and habitat were often in accordance with those suggested by previous studies of their ecology, life-history and distribution at other Indo-Pacific locations. However, the habitat associations of the Parupeneus and some Scarus species have not been studied at other locations and clearly warrant further investigation. It was concluded that habitat was an important determinant of the distribution of many Seychelles reef fishes, but that the habitat variables examined were rarely the most important determinant of biomass. However, the inclusion of a procedure to collect habitat data provided a useful means by which to reduce the unexplained variance associated with visual census biomass estimates and therefore improves the possibility of elucidating the effects of other factors on the biomass of Seychelles reef fishes.  相似文献   

20.
Many large, fishery‐targeted predatory species have attained very high relative densities as a direct result of protection by no‐take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge‐providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine‐scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve‐by‐habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号