首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
Fumarase (EC 4.2.1.2) from Corynebacterium glutamicum (Brevibacterium flavum) ATCC 14067 was purified to homogeneity. Its amino-terminal sequence (residues 1 to 30) corresponded to the sequence (residues 6 to 35) of the deduced product of the fumarase gene of C. glutamicum (GenBank accession no. BAB98403). The molecular mass of the native enzyme was 200 kDa. The protein was a homotetramer, with a 50-kDa subunit molecular mass. The homotetrameric and stable properties indicated that the enzyme belongs to a family of Class II fumarase. Equilibrium constants (K eq) for the enzyme reaction were determined at pH 6.0, 7.0, and 8.0, resulting in K eq=6.4, 6.1, and 4.6 respectively in phosphate buffer and in 16, 19, and 17 in non-phosphate buffers. Among the amino acids and nucleotides tested, ATP inhibited the enzyme competitively, or in mixed-type, depending on the buffer. Substrate analogs, meso-tartrate, D-tartrate, and pyromellitate, inhibited the enzyme competitively, and D-malate in mixed-type.  相似文献   

2.
ADP-ribosyl cyclase, which catalyzes the conversion from NAD+ to cyclic adenosine diphosphoribose (cADPR), is proposed to participate in cell cycle regulation in Euglena gracilis. This enzyme, which was found as a membrane-bound protein, was purified almost the homogeneity after solubilization with deoxycholate, and found to be a monomeric protein with a molecular mass of 40 kDa. Its Km value for NAD+ was estimated to be 0.4 mM, and cADPR, a product of the enzyme, inhibited the enzyme competitively with respect to NAD+ whereas another product, nicotinamide, showed noncompetitive (mixed-type) inhibition. In contrast to mammalian CD38 and BST-1, Euglena ADP-ribosyl cyclase lacked cADPR hydrolase activity.  相似文献   

3.
D-Arginase activity was found in the cells of an isolate, Arthrobacter sp. KUJ 8602, grown in the L-arginine medium, and the enzyme was purified and characterized. Its molecular weight was estimated to be about 232,000 by gel filtration, and that of the subunit was approximately 40,000 by SDS-PAGE, suggesting that the enzyme is a homohexamer. The enzyme acted on not only D-arginine but also 4-guanidinobutyrate, 3-guanidinopropionate and even L-arginine. The V(max)/K(m) values for 4-guanidinobutyrate and D-arginine were determined to be 87 and 0.81 micro mol/min/mg/mM, respectively. Accordingly, the enzyme is regarded as a kind of guanidinobutyrase [EC 3.5.3.7]. The pH optima for 4-guanidinobutyrate and D-arginine were 9.0 and 9.5, respectively. The enzyme was inhibited competitively by 5-aminovalerate, and thiol carboxylates such as mercaptoacetate served as strong mixed-type inhibitors. The enzyme contained about 1 g-atom of firmly bound Zn(2+) per mol of subunit, and removal of the metal ions by incubation with 1,10-phenanthroline resulted in loss of activity. The inactivated enzyme was reactivated markedly by incubation with either Zn(2+) or Co(2+), and slightly by incubation with Mn(2+). The nucleotide sequence of enzyme contains an open reading frame that encodes a polypeptide of 353 amino acid residues (M(r): 37,933). The predicted amino acid sequence contains sequences involved in the binding of metal ions and the guanidino group of the substrate, which show a high homology with corresponding sequences of Mn(2+)-dependent amidinohydrolases such as agmatinase from Escherichia coli and L-arginase from rat liver, though the homology of their entire sequences is relatively low (24-43%).  相似文献   

4.
Abstract The complete nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II (EIIMan) was determined. The gene consisted of 2052 base pairs encoding a protein of 683 amino acid residues; the molecular mass of the protein subunit was calculated to be 72570 Da. The N-terminal hydrophilic domain of EIIMan showed 39.7% homology with a C-terminal hydrophilic domain of Escherichia coli glucose-specific enzyme II (EIIGlc). Similar homology was shown between the C-terminal sequence of EIIMan and the E. coli glucose-specific enzyme III (EIIIGlc), or the EIII-like domain of Streptococcus mutans sucrose-specific enzyme II. Sequence comparison with other EIIs showed that EIIMan contained residues His-602 and Cys-28 which were homologous to the potential phosphorylation sites of EIIIGlc, or EIII-like domains, and hydrophilic domains (IIB) of several EIIs, respectively.  相似文献   

5.
The activity of N-acetyl-alpha-D-glucosaminidase from venom of the African puff adder (Bitis arietans) has been detected. The enzyme from the venom was purified by chromatography on Q-sepharose, CM-cellulose, and N-acetyl-alpha-D-glucosamine-agarose affinity column. The enzyme has a molecular weight of 102 kDa determined by size exclusion chromatography on Sephacryl 200. It migrated as a 51-kDa band on SDS polyacrylamide gels. The enzyme is maximally active at pH 5.5 and 40 degrees C. The B. arietans NAGase hydrolyzed exclusively terminally linked alpha-(1-4) GlcNAc residues from nonreducing ends of oligosaccharides. It hydrolysed chito-oligosaccharide, MU-GlcNAc and chitobiose with K(M) values of 0.15 mM and 1.22 mM, respectively. Swollen chitin and oligosaccharide above (GlcNAc)(4) were not hydrolysed by the enzyme. B. arietans NAGase was strongly inhibited noncompetitively by Hg(2+), competitively by 1-thio-beta-D-GlcNAc and N-acetyl glucosamine (NAG) with K(i) of 0.55, 0.25 and 8 mM, respectively. Colombin the active component of antivenom preparation from Aristolodia albida inhibited the enzyme competitively with K(i) of 0.6 mM. Delineation of the active site by chemical modification revealed the involvement of His and Trp in the catalysis of the enzyme.  相似文献   

6.
We constructed the high-expression system of the alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli BL 21 (DE3) to characterize the enzymological and structural properties of the gene product, Alr. The Alr was expressed in the soluble fractions of the cell extract of the E. coli clone and showed alanine racemase activity. The purified Alr was a dimer with a molecular mass of 78 kDa. The Alr required pyridoxal 5'-phosphate (PLP) as a coenzyme and contained 2 mol of PLP per mol of the enzyme. The holoenzyme showed maximum absorption at 420 nm, while the reduced form of the enzyme showed it at 310 nm. The Alr was specific for alanine, and the optimum pH was observed at about nine. The Alr was relatively thermostable, and its half-life time at 60 degrees C was estimated to be 26 min. The K(m) and V(max) values were determined as follows: l-alanine to d-alanine, K(m) (l-alanine) 5.01 mM and V(max) 306 U/mg; d-alanine to l-alanine, K(m) (d-alanine) 5.24 mM and V(max) 345 U/mg. The K(eq) value was calculated to be 1.07 and showed good agreement with the theoretical value for the racemization reaction. The high substrate specificity of the Alr from C. glutamicum ATCC 13032 is expected to be a biocatalyst for d-alanine production from the l-counter part.  相似文献   

7.
The gene encoding the second enzyme of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway for isopentenyl diphosphate biosynthesis, 1-deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase, was cloned and sequenced from Zymomonas mobilis. The deduced amino acid sequence showed the highest identity (48.2%) to the DXP reductoisomerase of Escherichia coli. Biochemical characterization of the purified DXP reductoisomerase showed a strict dependence of the enzyme on NADPH and divalent cations (Mn(2+), Co(2+) or Mg(2+)). The enzyme is a dimer with a molecular mass of 39 kDa per subunit and has a specific activity of 19.5 U mg protein(-1). Catalysis of the intramolecular rearrangement and reduction of DXP to MEP is competitively inhibited by the antibiotic fosmidomycin with a K(i) of 0.6 microM.  相似文献   

8.
Transketolase is important in production of the aromatic amino acids in Corynebacterium glutamicum. The complete nucleotide sequence of the C. glutamicum transketolase gene has been identified. The DNA-derived protein sequence is highly similar to the transketolase of Mycobacterium tuberculosis, taxonomically related to C. glutamicum. The alignment of the N-terminus regions between both transketolases showed TTG to be the most probable start codon. Potential ribosomal binding and promoter regions were situated upstream from the TTG. The deduced amino acid sequence consists of 700 residues with a calculated molecular mass of 75 kDa, and contains all amino acid residues involved in cofactor and substrate binding in the well-characterized yeast transketolase sequence.  相似文献   

9.
Human intestinal alanine aminopeptidase has been purified to greater than 90% homogeneity. The enzyme was released from mucosal cell membranes by Triton X-100 treatment. The native enzyme had a molecular weight of 206,000 in dilute buffer and 108,000 in the presence of sodium dodecyl sulfate. The enzyme was inhibited by chelators suggesting the presence of a metal ion in the enzyme. The most potent chelator inhibitor tested, o-phenanthroline, gave mixed kinetics (Ki = 67 micro M). Activity was restored by removal of the chelator. The enzyme was inhibited competitively by amino acids having hydrophobic side chains such as L-phenylalanine (Ki = 0.67 mM). Puromycin and methicillin also inhibited the enzyme in the competitive (Ki = 12.5 micro M) and noncompetitive (Ki = 4.6 mM) manner, respectively. Kinetic analysis of several amino acid beta-naphthylamides as substrates demonstrated the preference for substrates having hydrophobic or basic amino terminal residues with no beta-branching. L-Methionyl-beta-naphthylamide was the most tightly bound with L-alanyl-beta-naphthylamide was the most rapidly hydrolyzed.  相似文献   

10.
Amino acid sequence of porcine heart fumarase   总被引:3,自引:0,他引:3  
The complete amino acid sequence of porcine heart fumarase (EC 4.2.1.2) has been determined from peptides produced by cyanogen bromide, endoproteinase Arg-C, S. aureus V8 protease, and trypsin. The enzyme is a tetramer of identical subunits with Mr = 50,015 and composed of 466 amino acid residues. Porcine heart fumarase displays 96% identity to human liver fumarase. Prediction of the secondary structural elements of porcine fumarase indicate that the enzyme contains a large amount of alpha helix with very little beta structure.  相似文献   

11.
We report here the molecular cloning, characterization, and catalytic mechanism of a novel glycosphingolipid-degrading β-N-acetylgalactosaminidase (β-NGA) from Paenibacillus sp. TS12 (NgaP). Consisting of 1034 putative amino acid residues, NgaP shares no sequence similarity with known proteins. Recombinant NgaP, expressed in Escherichia coli, cleaved the nonreducing terminal β-GalNAc residues of gangliotriaosylceramide and globotetraosylceramide. The enzyme hydrolyzed para-nitrophenyl-β-N-acetylgalactosaminide ~100 times faster than para-nitrophenyl-β-N-acetylglucosaminide. GalNAc thiazoline, an analog of the oxazolinium intermediate and potent inhibitor for enzymes adopting substrate-assisted catalysis, competitively inhibited the enzyme. The K(i) of the enzyme for GalNAc thiazoline was 1.3 nM, whereas that for GlcNAc thiazoline was 46.8 μM. Comparison of the secondary structure with those of known enzymes exhibiting substrate-assisted catalysis and point mutation analysis indicated that NgaP adopts substrate-assisted catalysis in which Glu-608 and Asp-607 could function as a proton donor and a stabilizer of the 2-acetamide group of the β-GalNAc at the active site, respectively. These results clearly indicate that NgaP is a β-NGA showing substrate-assisted catalysis. This is the first report describing the molecular cloning of a β-NGA adopting substrate-assisted catalysis.  相似文献   

12.
The human pathogenic bacterium Clostridium difficile is a versatile organism concerning its ability to ferment amino acids. The formation of p-cresol as the main fermentation product of tyrosine by C. difficile is unique among clostridial species. The enzyme responsible for p-cresol formation is p-hydroxyphenylacetate decarboxylase. The enzyme was purified from C. difficile strain DMSZ 1296(T) and initially characterized. The N-terminal amino-acid sequence was 100% identical to an open reading frame in the unfinished genome of C. difficile strain 630. The ORF encoded a protein of the same size as the purified decarboxylase and was very similar to pyruvate formate-lyase-like proteins from Escherichia coli and Archaeoglobus fulgidus. The enzyme decarboxylated p-hydroxyphenylacetate (K(m) = 2.8 mM) and 3,4-dihydroxyphenylacetate (K(m) = 0.5 mM). It was competitively inhibited by the substrate analogues p-hydroxyphenylacetylamide and p-hydroxymandelate with K(i) values of 0.7 mM and 0.48 mM, respectively. The protein was readily and irreversibly inactivated by molecular oxygen. Although the purified enzyme was active in the presence of sodium sulfide, there are some indications for an as yet unidentified low molecular mass cofactor that is required for catalytic activity in vivo. Based on the identification of p-hydroxyphenylacetate decarboxylase as a novel glycyl radical enzyme and the substrate specificity of the enzyme, a catalytic mechanism involving ketyl radicals as intermediates is proposed.  相似文献   

13.
The discovery of a potentially novel proline-specific peptidase from bovine serum is presented which is capable of cleaving the dipeptidyl peptidase IV (DPIV) substrate Gly-Pro-MCA. The enzyme was isolated and purified with the use of Phenyl Sepharose Hydrophobic Interaction, Sephacryl S-300 Gel Filtration, and Q-Sephacryl Anion Exchange, producing an overall purification factor of 257. SDS PAGE resulted in a monomeric molecular mass of 158kDa while size exclusion chromatography generated a native molecular mass of 328kDa. The enzyme remained active over a broad pH range with a distinct preference for a neutral pH range of 7-8.5. Chromatofocusing and isoelectric focusing (IEF) revealed the enzyme's isoelectric point to be 4.74. DPIV-like activity was not inhibited by serine protease inhibitors but was by the metallo-protease inhibitors, the phenanthrolines. The enzyme was also partially inhibited by bestatin. Substrate specificity studies proved that the enzyme is capable of sequential cleavage of bovine beta-Casomorphin and Substance P. The peptidase cleaved the standard DPIV substrate, Gly-Pro-MCA with a K(M) of 38.4 microM, while Lys-Pro-MCA was hydrolysed with a K(M) of 103 microM. The DPIV-like activity was specifically inhibited by both Diprotin A and B, non-competitively, generating a K(i) of 1.4 x 10(-4) M for both inhibitors. Ile-Thiazolidide and Ile-Pyrrolidide both inhibited competitively with an inhibition constant of 3.7 x 10(-7) and 7.5 x 10(-7) M, respectively. It is concluded that bovine serum DPIV-like activity share many biochemical properties with DPIV and DPIV-like enzymes but not exclusively, suggesting that the purified peptidase may play an important novel role in bioactive oligopeptide degradation.  相似文献   

14.
A bacterium, Ochrobactrum anthropi, produced a large amount of a nucleosidase when cultivated with purine nucleosides. The nucleosidase was purified to homogeneity. The enzyme has a molecular weight of about 170,000 and consists of four identical subunits. It specifically catalyzes the irreversible N-riboside hydrolysis of purine nucleosides, the K(m) values being 11.8 to 56.3 microM. The optimal activity temperature and pH were 50 degrees C and pH 4.5 to 6.5, respectively. Pyrimidine nucleosides, purine and pyrimidine nucleotides, NAD, NADP, and nicotinamide mononucleotide are not hydrolyzed by the enzyme. The purine nucleoside hydrolyzing activity of the enzyme was inhibited (mixed inhibition) by pyrimidine nucleosides, with K(i) and K(i)' values of 0.455 to 11.2 microM. Metal ion chelators inhibited activity, and the addition of Zn(2+) or Co(2+) restored activity. A 1.5-kb DNA fragment, which contains the open reading frame encoding the nucleosidase, was cloned, sequenced, and expressed in Escherichia coli. The deduced 363-amino-acid sequence including a 22-residue leader peptide is in agreement with the enzyme molecular mass and the amino acid sequences of NH(2)-terminal and internal peptides, and the enzyme is homologous to known nucleosidases from protozoan parasites. The amino acid residues forming the catalytic site and involved in binding with metal ions are well conserved in these nucleosidases.  相似文献   

15.
A novel cysteine protease inhibitor (Eel-CPI-1) was isolated from the epidermis of the eel. Eel-CPI-1 was shown to bind strongly to both lactose- and carboxymethylated papain-affinity gels. Its molecular mass under reducing condition was determined to be 18 kDa by SDS-polyacrylamide gel electrophoresis but approximately 30.5 kDa under non-reducing-conditions. Eel-CPI-1 inhibited papain (K(i)=18 nM) and ficin (K(i)=120 nM) competitively. Combined with the data on amino acid and sequence analysis, Eel-CPI-1 is identical to the eel lectin, AJL-2. This is the first report describing a cysteine protease inhibitor with lectin activity.  相似文献   

16.
Two different putative precursor polypeptides of rat liver fumarase were synthesized when RNA prepared from rat liver were translated in vitro using the rabbit reticulocyte lysate system. One of these putative precursor polypeptides (P1) was synthesized as a larger molecular mass than the mature subunit of fumarase (45,000 daltons) by about 5,000 daltons and the other (P2) had the same molecular mass as the mature enzyme. When the 35S-labeled cell-free translation products were incubated with rat liver mitochondria at 30 degrees C, P1 and the 35S-labeled mature size fumarase were associated with the mitochondria. Of these, the 35S-labeled mature size fumarase was resistant to externally added protease, but P1 was not, indicating that the 35S-labeled mature size fumarase was located in the mitochondrial matrix. The following observations strongly suggested that the 35S-labeled mature size fumarase in mitochondria was derived from P1, which was energy-dependently imported and concomitantly processed to the mature size. 1) The amount of the 35S-labeled mature size fumarase recovered from the mitochondria increased proportionally to the duration of incubation, while the amount of P1 recovered from the post-mitochondrial and mitochondrial fractions decreased with the duration of the incubation. 2) Only P1 could bind with the mitochondrial outer membrane at 0 degrees C even in the presence of an uncoupler of the oxidative phosphorylation but P2 did not. 3) P1 bound to the mitochondrial outer membrane was imported into the matrix, when the mitochondria binding only P1 at 0 degrees C was reisolated and incubated at 30 degrees C in the presence of an energy-generating system. The specific receptor was involved in the binding of P1 to mitochondria, since a high concentration of NaCl did not interfere with the binding of P1 to the membrane and did not discharge P1 bound onto the membrane. It was shown that P1 formed an aggregate composed of 6 to 8 molecules and P2 was a dimer in the cell-free translation mixture and that P1 and P2 were enzymatically inactive. These results suggest that the precursor for the mitochondrial enzyme has a larger molecular weight than that of the mature enzyme, whereas the precursor for the cytosolic enzyme has the same molecular weight as the mature enzyme.  相似文献   

17.
Incubation of oxidized coenzyme A disulfide (produced by oxidation of reduced CoA with 1 eq of sodium periodiate or of CoA disulfide with 1 eq of peracetic acid) with succinyl-CoA disulfide with 1 eq of peracetic acid) with succinyl-CoA synthetase from either porcine heart or Escherichia coli led to the formation of inactive enzyme containing 1 mol of CoA per alphabeta dimer. The bound CoA was attached through a disulfide bond to a sulfhydryl group of the beta subunit. Release of CoA and restoration of activity was achieved by incubation of the modified enzyme with thiols, such as dithiothreitol. Interaction of oxidized CoA disulfide with enzyme was inhibited competitively by desulfo-CoA, which is a competitive inhibitor of the enzyme with respect to CoA. These data are evidence that oxidized CoA disulfide is an affinity label for the CoA binding site of succinyl-CoA synthetase and are the first positive results implicating the beta subunit in the catalytic mechanism of the enzyme.  相似文献   

18.
A beta-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified beta-glucosidase evidenced high homology with the fungal beta- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60 degrees C, and the enzyme had a half-life of 53 h at 60 degrees C. The Km values for p-nitrophenyl-beta-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-delta-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.  相似文献   

19.
Abstract An NADP(H)-specific glutamate dehydrogenase of Haloferax mediterranei has been purified to apparent homogeneity and characterised. The purified enzyme was stabilized by glycerol in absence of salt. Glutamate dehydrogenase from Hf. mediterranei is a hexameric enzyme with a native molecular mass of 320 kDa composed of monomers each with a molecular mass of 55 kDa. At pH 8.5 the enzyme has K ms of 0.018, 0.34 and 4.2 mM for NADP+, 2-oxoglutarate and ammonium, respectively. Amino acid composition and sequence of the first 16 residues of the N-terminus have been determined.  相似文献   

20.
The lactic acid bacterium, Leuconostoc mesenteroides, when grown on an arbutin-containing medium, was found to produce an intracellular β-glucosidase. The enzyme was purified by chromatofocusing, ion-exchange chromatography and gel filtration. The molecular mass of the purified intracellular β-glucosidase, as estimated by gel filtration, was 360 kDa. The tetrameric structure of the β-glucosidase was determined following treatment of the purified enzyme with dodecyl sulphate (SDS). The intracellular β-glucosidase exhibited optimum catalytic activity at 50°C and pH 6 with citrate–phosphate buffer, and 5·5 with phosphate buffer. The enzyme was active against glycosides with (1→4)-β, (1→4)-α and (1→6)-α linkage configuration. From Lineweaver–Burk plots, K m values of 0·07 mmol l−1 and 3·7 mmol l−1 were found for p -nitrophenyl-β- D -glucopyranoside and linamarin, respectively. The β-glucosidase was competitively inhibited by glucose and by D -gluconic acid–lactone and a glucosyl transferase activity was observed in the presence of ethanol. The β-glucosidase of Leuconostoc mesenteroides, with cyanogenic activity, could be of potential interest in cassava detoxification, by hydrolysing the cyanogenic glucosides present in cassava pulp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号