首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
J I Cohen  F Wang    E Kieff 《Journal of virology》1991,65(5):2545-2554
Epstein-Barr virus (EBV) nuclear protein 2 (EBNA-2) is essential for B-lymphocyte growth transformation. EBNA-2 transactivates expression of the EBV latent membrane protein (LMP-1) and also transactivates expression of the B-lymphocyte proteins CD21 and CD23. In order to analyze the functional domains of EBNA-2, we constructed 11 linker-insertion and 15 deletion mutations. Each of the mutant EBNA-2 proteins localized to the nucleus, and each was expressed at levels similar to wild-type EBNA-2. Deletion of both EBNA-2 basic domains was required to prevent nuclear localization, indicating that either is sufficient for nuclear translocation. The mutant EBNA-2 genes were assayed for lymphocyte transformation after recombination with the EBNA-2-deleted P3HR-1 EBV genome and for LMP-1 transactivation following transfection into P3HR-1-infected B-lymphoma cells. Cell lines transformed by recombinant EBV carrying EBNA-2 mutations were assayed for growth properties and LMP-1, CD21, and CD23 expression. The mutational analysis indicates that at least four separate EBNA-2 domains are essential for lymphocyte transformation. Two other domains are necessary for the full transforming phenotype. Two deletion and eight linker-insertion mutations did not reduce transforming activity. Mutations which diminish or abolish lymphocyte transformation also diminish or abolish LMP-1 transactivation, respectively. Cells transformed by recombinant EBV carrying EBNA-2 genes with diminished or normal transforming activity all expressed high levels of LMP-1, CD23, and CD21. These findings suggest that transactivation of these viral and cellular genes by EBNA-2 plays a critical role in lymphocyte transformation by EBV. Furthermore, these results indicate that the transformation and transactivation functions of EBNA-2 may not be separable.  相似文献   

2.
3.
4.
5.
F Wang  A Marchini    E Kieff 《Journal of virology》1991,65(4):1701-1709
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes.  相似文献   

6.
7.
GAL4 activates gene expression in mammalian cells   总被引:73,自引:0,他引:73  
H Kakidani  M Ptashne 《Cell》1988,52(2):161-167
  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号