首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azotobacter vinelandii requires a high complement of iron and an efficient iron acquisition system to support nitrogen fixation. To circumvent problems inherent in batch culture trace metal studies, continuous cultures were used to measure the response of A. vinelandii to iron stress. Iron was found to be growth limiting for nitrogen-fixing A. vinelandii at a concentration as high as 12.5 muM; iron was growth sufficient at 25 muM. Iron-stressed A. vinelandii in continuous culture formed 2,3-hydroxybenzoic acid (DHB), 2-N,6-N-di-(2,3-dihydroxybenzoyl)-l-lysine (DHBL), and a chromophoric yellow-green fluorescent peptide (YGFP). At a fixed dilution rate of 0.1 h, steady-state growth occurred at growth-limiting iron concentrations. DHB and DHBL were quantitatively measured during iron-limited steady states and iron-sufficient states by Arnow colorimetric assays. YGFP was determined by absorbance measurements taken at 380 nm, and the concentration was calculated from the reported specific absorption coefficient. Biomass increased and DHBL, DHB, and YGFP concentrations decreased as the concentration of growth-limiting iron was increased in the culture vessel and medium reservoirs. DHBL was the major siderophore and YGFP was the minor siderophore species produced during iron-limited equilibrium growth. A low level of DHB and YGFP, but no DHBL, was formed under iron-sufficient conditions. These results provide further physiological evidence that DHB, YGFP, and especially DHBL may function as siderophores in nitrogen-fixing A. vinelandii.  相似文献   

2.
Summary Low concentrations of nalidixic acid and oxolinic acid that were just inhibitory toAzotobacter vinelandii growth promoted the production of the catechol siderophores azotochelin and aminochelin, in the presence of normally repressive concentrations of Fe3+. There was a limited effect on the pyoverdin siderophore, azotobactin, where low concentrations of Fe3+ were rendered less repressive, but the repression by higher concentrations of Fe3+ was normal. These drugs did not induce high-molecular-mass iron-repressible outer-membrane proteins and similar effects on the regulation of catechol siderophore synthesis were not produced by novobiocin, coumermycin, or ethidium bromide. The timing of nalidixic acid and Fe3+ addition to iron-limited cells was critical. Nalidixic acid had to be added before iron-repression of catechol siderophore synthesis and before the onset of iron-sufficient growth. Continued production of the catechol siderophores, however, was not due to interference with normal iron uptake. These data indicated that nalidixic acid prevented normal iron-repression of catechol siderophore synthesis but could not reverse iron repression once it had ocurred. The possible roles of DNA gyrase activity in the regulation of catechol siderophore synthesis is discussed.  相似文献   

3.
The sodium-dependent strain 184 of Azotobacter chroococcum was unable to grow significantly in iron-limited medium, but did produce iron-repressible outer membrane proteins. Siderophores were not produced under these conditions. Citric acid was excreted, but not in response to iron limitation. This strain, however, was able to grow in insoluble mineral iron sources, and under these conditions the cells produced a hydroxamate. Growth on minerals and hydroxamate production was dependent on a low level of freely exchangeable iron. Optimal hydroxamate production was observed with 0.75 μM ferric citrate, and hydroxamate production was repressed by >5 μM iron. Despite this iron requirement, hyroxamate was only formed during internal iron limitation of the cells. Iron-containing cells were able to grow in iron-limited medium but only produced hydroxamate when their iron-per-cellular-protein content was low. These results, the spectral changes observed upon Fe3+ addition, and iron-uptake coincident with hydroxamate production suggested that the hydroxamate was a siderophore.  相似文献   

4.
In this study, the production of siderophores by Xylella fastidiosa from the citrus bacteria isolate 31b9a5c (FAPESP – ONSA, Brazil) was investigated. The preliminary evidence supporting the existence of siderophore in X. fastidiosa was found during the evaluation of sequencing data generated in our lab using the BLAST-X tool, which indicated putative open reading frames (ORFs) associated with iron-binding proteins. In an iron-limited medium siderophores were detected in the supernatant of X. fastidiosa cultures. The endophytic bacterium Methylobacterium extorquens was also evaluated. Capillary electrophoresis was used to separate putative siderophores produced by X. fastidiosa. The bacterial culture supernatants of X. fastidiosa were identified negative for hydroxamate and catechol and positive for M. extorquens that secreted hydroxamate-type siderophores.  相似文献   

5.
Rhizobium leguminosarum IARI 102 produced a phenolate type siderophore (a derivative of 2,3-DHBA) under iron-limited conditions. Addition of Fe3+ to the culture medium increased the growth yield significantly, but repressed the production of the iron-chelating compound. Iron level of culture medium also had a significant role in the composition of outer membrane proteins ofR. leguminosarum IARI 102. Maximum iron uptake was observed only in the presence of its own siderophore.  相似文献   

6.
Aim: To characterize the complementary production of two types of siderophores in Azotobacter vinelandii. Methods and Results: In an iron‐insufficient environment, nitrogen‐fixing A. vinelandii produces peptidic (azotobactin) and catechol siderophores for iron uptake to be used as a nitrogenase cofactor. Molybdenum, another nitrogenase cofactor, was also found to affect the production level of siderophores. Wild‐type cells excreted azotobactin into molybdenum‐supplemented and iron‐insufficient medium, although catechol siderophores predominate in molybdenum‐free environments. Two gene clusters were identified to be involved in the production of azotobactin and catechol siderophores through gene annotation and disruption. Azotobactin‐deficient mutant cells produced catechol siderophores under the molybdenum‐supplemented and iron‐insufficient conditions, whereas catechol siderophore–deficient mutant cells extracellularly secreted excess azotobactin under iron‐deficient condition independent of the concentration of molybdenum. This evidence suggests that a complementary siderophore production system exists in A. vinelandii. Conclusions: Molybdenum was found to regulate the production level of two types of siderophores. Azotobacter vinelandii cells are equipped with a complementary production system for nitrogen fixation in response to a limited quantity of metals. Significance and Impact of the Study: This is the first study identifying A. vinelandii gene clusters for the biosynthesis of two types of siderophores and clarifying the relationship between them.  相似文献   

7.
X. Hu  G. L. Boyer 《Applied microbiology》1996,62(11):4044-4048
The bacterium Bacillus megaterium ATCC 19213 is known to produce two hydroxamate siderophores, schizokinen and N-deoxyschizokinen, under iron-limited conditions. In addition to their high affinity for ferric ions, these siderophores chelate aluminum. Aluminum was absorbed by B. megaterium ATCC 19213 through the siderophore transport receptor, providing an extra pathway for aluminum accumulation into iron-deficient bacteria. At low concentrations of the metal, siderophore-mediated uptake was the dominant process for aluminum accumulation. At high concentrations of aluminum, passive transport dominated and siderophore production slowed the passive transport of aluminum into the cell. Siderophore production was affected by the aluminum content in the media. High concentrations of aluminum increased production of siderophores in iron-limited cultures, and this production continued into stationary phase. Aluminum did not stimulate siderophore production in iron-replete cultures. The production of siderophores markedly affected aluminum uptake. This has direct implications on the toxicity of heavy metals under iron-deficient conditions.  相似文献   

8.
The growth of marine bacteria under iron-limited conditions was investigated. Neither siderophore production nor bacterial growth was detected for Pelagiobacter sp. strain V0110 when Fe(III) was present in the culture medium at a concentration of <1.0 μM. However, the growth of V0110 was strongly stimulated by the presence of trace amounts of exogenous siderophore from an alpha proteobacterium, V0902, and 1 nM N-acyl-octanoylhomoserine lactone (C8-HSL), which is known as a quorum-sensing chemical signal. Even though the iron-binding functionality of a hydroxamate siderophore was undetected in the supernatant of V0902, a hydroxamate siderophore was detected in the supernatant of V0110 under the above conditions. These results indicated that hydroxamate siderophore biosynthesis by V0110 began in response to the exogenous siderophore from V0902 when in the presence of C8-HSL; however, C8-HSL production by V0110 and V0902 was not detected. Direct interaction between V0902 and V0110 through siderophore from V0902 was observed in the dialyzing culture. Similar stimulated growth by exogenous siderophore and HSL was also observed in other non-siderophore-producing bacteria isolated from marine sponges and seawater. The requirement of an exogenous siderophore and an HSL for heterologous siderophore production indicated the possibility that cell-cell communication between different species was occurring.  相似文献   

9.
More than 60% of species examined from a total of 421 strains of heterotrophic marine bacteria which were isolated from marine sponges and seawater were observed to have no detectable siderophore production even when Fe(III) was present in the culture medium at a concentration of 1.0 pM. The growth of one such non-siderophore-producing strain, alpha proteobacterium V0210, was stimulated under iron-limited conditions with the addition of an isolated exogenous siderophore, N,N'-bis (2,3-dihydroxybenzoyl)-O-serylserine from a Vibrio sp. Growth was also stimulated by the addition of three exogenous siderophore extracts from siderophore-producing bacteria. Radioisotope studies using (59)Fe showed that the iron uptake ability of V0210 increased only with the addition of exogenous siderophores. Biosynthesis of a hydroxamate siderophore by V0210 was shown by paper electrophoresis and chemical assays for the detection of hydroxamates and catechols. An 85-kDa iron-regulated outer membrane protein was induced only under iron-limited conditions in the presence of exogenous siderophores. This is the first report of bacterial iron uptake through an induced siderophore in response to exogenous siderophores. Our results suggest that siderophores are necessary signaling compounds for growth and for iron uptake by some non-siderophore-producing marine bacteria under iron-limited conditions.  相似文献   

10.
The growth of marine bacteria under iron-limited conditions was investigated. Neither siderophore production nor bacterial growth was detected for Pelagiobacter sp. strain V0110 when Fe(III) was present in the culture medium at a concentration of <1.0 microM. However, the growth of V0110 was strongly stimulated by the presence of trace amounts of exogenous siderophore from an alpha proteobacterium, V0902, and 1 nM N-acyl-octanoylhomoserine lactone (C(8)-HSL), which is known as a quorum-sensing chemical signal. Even though the iron-binding functionality of a hydroxamate siderophore was undetected in the supernatant of V0902, a hydroxamate siderophore was detected in the supernatant of V0110 under the above conditions. These results indicated that hydroxamate siderophore biosynthesis by V0110 began in response to the exogenous siderophore from V0902 when in the presence of C(8)-HSL; however, C(8)-HSL production by V0110 and V0902 was not detected. Direct interaction between V0902 and V0110 through siderophore from V0902 was observed in the dialyzing culture. Similar stimulated growth by exogenous siderophore and HSL was also observed in other non-siderophore-producing bacteria isolated from marine sponges and seawater. The requirement of an exogenous siderophore and an HSL for heterologous siderophore production indicated the possibility that cell-cell communication between different species was occurring.  相似文献   

11.
Thirty-one bradyrhizobial and rhizobial strains infecting pigeon pea were screened for siderophore production using Chrome Azurol S (CAS) agar plate as well as a CAS assay solution. Of a total of 31 strains only 23 showed siderophore production. Of the 23 siderophore-positive strains, 21 strains showed the production of hydroxamate while 6 strains showed the presence of catechol type of siderophore. A large variation in the quantity of hydroxamate and catechol produced by different rhizobial strains was observed (1.03–3.73 μg hydroxamate N per mg protein; 0.19–3.43 μmol/L of catechol per mg protein). Maximum nodule biomass was produced by strain PP-11 (CC-1020); strain G-14 formed minimum nodule biomass. Nitrogen contents of low, moderate and high siderophore-producing strains were 11.4, 15.4, 20.9 mg per plant, respectively, iron contents were 1445, 1768 and 2003 ppm, respectively. Siderophore production was related to N2-fixing efficiency.  相似文献   

12.
Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1 is elicited by sufficient iron rather than by iron starvation. In order to clarify this unusual pattern, siderophore production was monitored in parallel to iron assimilation using the chrome azurol sulfonate assay and the ferrozine method respectively. Iron concentration lowered approximately five times less than its initial concentration only within 4 h post-inoculation, rendering the medium iron deficient. A concentration of at least 6 microM Fe(3+) is required to initiate siderophore production. The propensity of M. magneticum AMB-1 for the assimilation of large amounts of iron accounts for the rapid depletion of iron in the medium, thereby triggering siderophore excretion. M. magneticum AMB-1 produces both hydroxamate and catechol siderophores.  相似文献   

13.
More than 60% of species examined from a total of 421 strains of heterotrophic marine bacteria which were isolated from marine sponges and seawater were observed to have no detectable siderophore production even when Fe(III) was present in the culture medium at a concentration of 1.0 pM. The growth of one such non-siderophore-producing strain, alpha proteobacterium V0210, was stimulated under iron-limited conditions with the addition of an isolated exogenous siderophore, N,N′-bis (2,3-dihydroxybenzoyl)-O-serylserine from a Vibrio sp. Growth was also stimulated by the addition of three exogenous siderophore extracts from siderophore-producing bacteria. Radioisotope studies using 59Fe showed that the iron uptake ability of V0210 increased only with the addition of exogenous siderophores. Biosynthesis of a hydroxamate siderophore by V0210 was shown by paper electrophoresis and chemical assays for the detection of hydroxamates and catechols. An 85-kDa iron-regulated outer membrane protein was induced only under iron-limited conditions in the presence of exogenous siderophores. This is the first report of bacterial iron uptake through an induced siderophore in response to exogenous siderophores. Our results suggest that siderophores are necessary signaling compounds for growth and for iron uptake by some non-siderophore-producing marine bacteria under iron-limited conditions.  相似文献   

14.
In the present study, 22 different bacteria were isolated from open ocean water from the Gulf of Mannar, India. Of the 22 isolates, 4 were identified as Vibrio spp. (VM1, VM2, VM3 and VM4) and found to produce siderophores (iron-binding chelators) under iron-limited conditions. Different media were found to have an influence on siderophore production. Maximum siderophore production was observed with VM1 isolate in MM9 salts medium at 48 h of incubation. The isolate was confirmed as Vibrio harveyi based on 16S rRNA gene sequencing and phylogenetic analysis. Fourier-transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectra revealed the hydroxamate nature of the siderophore produced. Further characterization of the siderophore revealed it to be of dihydroxamate nature, forming hexadentate ligands with Fe(III) ions. A narrow shift in ultraviolet (UV)–Vis spectrum was observed on photolysis due to ligand oxidation. Growth-promotion bioassay with Aeromonas hydrophila, Staphylococcus aureus and E. coli confirmed the iron-scavenging property of the siderophore produced by Vibrio harveyi.  相似文献   

15.
Since ericoid mycorrhizae become dominant in heathland plant communities on acid soils, we assessed the effect of pH on the hydroxamate siderophore production by a typical ericoid mycorrhizal fungus under pure culture conditions. In addition, we determined whether the supplementation of the nutrient medium with L-ornithine or L-proline as precursors for hydroxamate siderophores would enhance their biosynthesis. The results indicate that the hydroxamate siderophore production by Hymenoscyphus ericae has its optimum at pH 4.5 (between 3.5 and 5.5). L-ornithine rather than L-proline appears to favour the biosynthesis of hydroxamate siderophores.  相似文献   

16.
Four uroisolates and four fæcal isolates ofEscherichia coli were randomly selected for studying the siderophore production in an iron-deficient, chemically defined, medium. Glucose, lactose, urea and creatinine were added individually, as well as in combination, to estimate their influence on siderophore production. No difference in siderophore production was observed between stool and urinary isolates ofE. coli. Alterations in phenolate production were observed to be constituent-dependent while a uniformly significant increase in hydroxamate production (p<0.05) was recorded after addition of the constituents, either each individually or in combination.  相似文献   

17.
Thirty seven strains ofEscherichia coli isolated from the urine of patients with acute symptomatic urinary tract infection were examined for siderophore production: hydroxamate (aerobactin) and phenolate (enterochelin). All the strains were found to produce varying amounts of enterochelin. With the chemical assay, 24.3% strains were aerobactin producers, while 43.2% were positive in the bio-assay. All the aerobactin producers carried the aerobactin receptor on their surface. Attempts to correlate siderophore production with growth in minimal and iron-depleted medium showed that there was a positive quantitative correlation between enterochelin production and growth of organisms under iron depletion. Aerobactin production failed to give an additional advantage of growth to strains producing enterochelin.  相似文献   

18.
The production, detection and the effects of iron concentration on the siderophore production ofStaphylococcus strains used as meat starter cultures were studied. Non-pathogenicStaphylococcus strains produce extracellular low molecular weight compounds which exhibited positive reactivity when measured by a universal detection method for siderophores. The production of siderophores was very closely associated with the iron concentration in the medium, and very low additions considerably reduced siderophore production. Although the production of siderophores was highly iron-dependent, the antimicrobial activity of spent medium fromStaphylococcus cultures against selected yeasts and moulds remained considerable under high iron concentrations.  相似文献   

19.
Supplementation of cultures ofAerobacter aerogenes 62-1, 43/4 h after initiation of growth withd-glucose (20 mM), resulted in a threefold increase in the production of aerobactin. Administration ofl-lysine under similar conditions led to a twofold incrasse in the yield of the siderophore. Studies with a cell-free system ofAerobacter aerogenes 62-1 revealed considerable stimulation of lysine-N6-hydroxylase activity by glucose and several of its derivatives. Inclusion of ferric chloride (0.1 mM) in the growth medium led to the repression of both lysine-N6-hydroxylase and aerobactin synthetase.  相似文献   

20.
3种水稻土中7株固氮蓝细菌的分离与特征   总被引:1,自引:0,他引:1  
【背景】蓝细菌是水生和陆地生态系统中生物固氮的主要贡献者。【目的】增加对稻田土壤固氮蓝细菌的了解,获得用于进一步研究的可培养固氮蓝细菌菌株。【方法】选择3种具有不同固氮能力的水稻土,采用BG11-N培养基分离培养固氮蓝细菌菌株,对新分离菌株进行形态特征观察,通过基因组DNA的nifH基因扩增明确其固氮潜力,进一步采用乙炔还原法和~(15)N_2示踪法定量测定其固氮能力,通过基因组DNA的16SrRNA基因序列比对进行鉴定。【结果】在光照培养条件下,采用BG11-N培养基共分离纯化得到自养菌株7株,细胞呈圆形或椭圆形、单列、无分枝、丝状和念珠状,在固体培养基上形成团垫状菌落。新分离菌株在BG11-N培养基中生长状况良好,以基因组DNA为模板可扩增出nifH基因,乙炔还原法和~(15)N_2示踪法测定结果显示具有较高固氮能力,同时具有铁载体生成能力。结合16S rRNA基因序列比对和形态特征,7株菌被初步鉴定隶属于念珠藻科(Nostocaceae)。【结论】从水稻土中分离到在稻田生物固氮中发挥重要作用的蓝细菌(念珠藻科)菌株,可培养固氮蓝细菌菌株固氮能力较高,兼具铁载体生成能力,可作为进一步深入研究的微生物资源,具有潜在的研究应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号