首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of novel 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives was successfully designed, synthesized and evaluated as a new chemical scaffold with vascular endothelial growth factor receptor (VEGFR 2) inhibitory activity. Compounds 6c and 6b showed enzyme inhibition of 97% and 87% at 10 µM, respectively, and exhibited potent dose-related VEGFR 2 inhibition with IC50 values of 0.85 µM and 2.26 µM, respectively. The design of the 6,7-dihydro-5H-cyclopenta[d]pyrimidine scaffold was implemented via consecutive molecular modelling protocols prior to the synthesis and biological evaluation of the derivatives. First, sorafenib was docked in the binding site of VEGFR 2 to study its binding orientation and affinity, followed by the generation of a valid 3D QSAR pharmacophore model for use in the virtual screening of different 3D databases. Structures with promising pharmacophore-based virtual screening results were refined using molecular docking studies in the binding site of VEGFR 2. A novel scaffold was designed by incorporating the results of the pharmacophore model generation and molecular docking studies. The new scaffold showed hydrophobic interactions with the kinase front pocket that may be attributed to increasing residence time in VEGFR 2, which is a key success factor for ligand optimization in drug discovery. Different derivatives of the novel scaffold were validated using docking studies and pharmacophore mapping, where they exhibited promising results as VEGFR 2 inhibitors to be synthesized and biologically evaluated. 6,7-dihydro-5H-cyclopenta[d]pyrimidine is a new scaffold that can be further optimized for the synthesis of promising VEGFR 2 inhibitors.  相似文献   

2.
The effects of UV irradiation on DNA metabolism during meiosis have been examined in wild-type (RAD+) and mitotically defined excision-defective (rad1-1) strains of Saccharomyces cerevisiae that exhibit high levels of sporulation. The rad1-1 gene product is not required for normal meiosis: DNA synthesis, RNA synthesis, size of parental and newly synthesized DNA and sporulation are comparable in RAD+ and rad1-1 strains. Cells were UV irradiated at the beginning of meiosis, and the fate of UV-induced pyrimidine dimers as well as changes in DNA and DNA synthesis were followed during meiosis. Excision repair of pyrimidine dimers can occur during meiosis and the RAD1 gene product is required; alternate excision pathways do not exist. Although the rate of elongation is decreased, the presence of pyrimidine dimers during meiosis in the rad1-1 strain does not block meiotic DNA synthesis suggesting a bypass mechanism. The final size of DNA is about five times the distance between pyrimidine dimers after exposure to 4 J/m2. Since pyrimidine dimers induced in parental strands of rad1-1 prior to premeiotic DNA synthesis do not become associated with newly synthesized DNA, the mechanism for replicational bypass does not appear to involve a recombinational process. The absence of such association indicates that normal meiotic recombination is also suppressed by UV-induced damage in DNA; this result at the molecular level is supported by observations at the genetic level.  相似文献   

3.
[14C]Formate is incorporated into the C-2 of the pyrimidine moiety of thiamin by Escherichia coli and Salmonella typhimurium. In Saccharomyces cerevisiae, it is incorporated into C-4. Radioactive carbons of [1-14C]glycine and [2-14C]glycine are incorporated by S. typhimurium into the C-4 and C-6 of the pyrimidine, respectively, but not by S. cerevisiae. These facts suggest that procaryotes and eucaryotes have different biosynthetic pathways for pyrimidine. In this study, the procaryotes tested incorporated [14C]formate into the C-2 and the eucaryotes incorporated it into the C-4 of the pyrimidine.  相似文献   

4.
The 621 bp udk gene encoding Borrelia burgdorferi potential uridine kinase, involved in the pyrimidine salvage pathway, was cloned and sequenced. The B. burgdorferi protein has a molecular mass of 24 kDa in sodium dodecyl sulfate-polyacrylamide gel. The N-terminal sequence of the protein, Ala-Lys-Ile-Ile, is identical to that predicted but lacks N-terminal methionine. udk is located at around 15 kb from the left telomere and forms an operon with an upstream ORF. A likely hypothesis for the role of the pyrimidine salvage pathway is the sole use of endogenous nucleotides for Borrelia.  相似文献   

5.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

6.
A deficiency in the production of β-alanine causes the black (b) phenotype of Drosophila melanogaster. This phenotype is normalized by a semi-dominant mutant gene Su(b) shown previously to be located adjacent to or within the rudimentary (r) locus. The r gene codes for three enzyme activities involved in de novo pyrimidine biosynthesis. Pyrimidines are known to give rise to β-alanine. However, until recently it has been unclear whether de novo pyrimidine biosynthesis is directly coupled to β-alanine synthesis during the tanning process. In this report we show that flies carrying Su(b) can exhibit an additional phenotype, resistance to toxic pyrimidine analogs (5-fluorouracil, 6-azathymine and 6-azauracil). Our interpretation of this observation is that the pyrimidine pool is elevated in the mutant flies. However, enzyme assays indicate that r enzyme activities are not increased in Su(b) flies. Genetic mapping of the Su(b) gene now places the mutation within the r gene, possibly in the carbamyl phosphate synthetase (CPSase) domain. The kinetics of CPSase activity in crude extracts has been studied in the presence of uridine triphosphate (UTP). While CPSase from wild-type flies was strongly inhibited by the end-product, UTP, CPSase from Su(b) was inhibited to a lesser extent. We propose that diminished end-product inhibition of de novo pyrimidine biosynthesis in Su(b) flies increases available pyrimidine and consequently the β-alanine pool. Normalization of the black phenotype results.  相似文献   

7.

Background

African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.

Methodology/Principal Findings

Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5/ trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.

Conclusions/Significance

Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.  相似文献   

8.
A series of novel pyrido[2,3-d]pyrimidine derivatives 6 were prepared starting from 2-amino-3-cyano-4-trifluoromethyl-6-phenyl pyridine 3 via Grignard’s reaction, cyclization followed by coupling with aliphatic and cyclic amines. All the compounds 6 were screened for antibacterial, minimum bactericidal concentration (MBC), biofilm inhibition activity as well as antifungal and minimum fungicidal concentration (MFC) activities. Among the screened compounds, the compounds 6e, 6f, and 6m which showed exhibiting promising activity have been identified. The results reveal that the compound pyrido[2,3-d]pyrimidine derivative 6e altered the sterol profile which may exert its antifungal activity through inhibition of ergosterol biosynthesis and could be an ideal candidate for antifungal therapy. The molecular docking results also validated the antifungal results.  相似文献   

9.
The DNA molecule is a target for plethora of anticancer and antiviral drugs that forms covalent and non-covalent adducts with major or minor groove of DNA. In present study we synthesized series of novel Pyrazolo [1,5-a]pyrimidine derivatives. The newly synthesized compounds were characterized by elemental analysis, IR, 1H NMR, and mass spectral data. The selected compounds were studied for interaction with Calf thymus DNA (CT-DNA) using electronic spectra, viscosity measurement and thermal denaturation studies. Further, molecular interactions were revealed for compound IIIa and IVa by computational methodologies. The preferred mode of ligand binding with double helical DNA as well as preferable DNA groove were explored by molecular docking in different DNA models.  相似文献   

10.
Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution.  相似文献   

11.
Incorporation of radioactivity from [6-14C]orotate into the pyrimidine constituents of shoots of Pisum sativum, Phaseolus vulgaris and Lathyrus tingitanus was examined with special reference to the unusual pyrimidine constituents. With each species, although 80% of the orotate supplied was catabolized to β-alanine, all the pyrimidine derivatives became radioactively labelled. With Pisum, the major part of the radioactivity incorporated into pyrimidines was located in UMP and the uracil derivatives, including the uracilyl amino acids willardiine and isowillardiine. With Phaseolus, UMP and the uracil derivatives were again the major radioactive products; incorporation of radioactivity into 5-ribosyluracil (pseudouridine), which accumulates in Phaseolus tissues, was comparable to the incorporation into orotidine and twice that found in cytidine. Lathyrus incorporated a substantially larger part of the presented [6-14C] orotate into pyrimidine derivatives than did the other two species. CMP was the most highly radioactive product, followed next by lathyrine and UMP. Surprisingly, 20% of the total radioactivity incorporated into pyrimidines by Lathyrus was located in the pyrimidine amino acid lathyrine. This confirms previous evidence that lathyrine is essentially a product of the orotate pathway. The overall recovery of radioactivity in all three species was 93–95%. The data emphasize the necessity of including the less common pyrimidine constituents, as well as the common ones, in quantitative studies of pyrimidine metabolism in plants.  相似文献   

12.
A series of novel 7-aminoalkyl substituted pyrazolo[1,5-a]pyrimidine derivatives were synthesized and tested for inhibition of cathepsin K. The synthetic methodology comprises cyclization of 5-aminopyrazoles with N-Boc-α-amino acid-derived ynones followed by transformation of the ester and the Boc-amino functions. It allows for easy diversification of the pyrazolo[1,5-a]pyrimidine scaffold at various positions. Molecular docking studies with pyrazolo[1,5-a]pyrimidine derivatives were also performed to elucidate the binding mode in the active site of cathepsin K. The synthesized compounds exhibited moderate inhibition activity (Ki ≥ 77 μM).  相似文献   

13.
Previous work has provided evidence that plants may require boron to maintain adequate levels of pyrimidine nucleotides, suggesting that the state of boron deficiency may actually be one of pyrimidine starvation. Since the availability of pyrimidine nucleotides is influenced by their rates of synthesis, salvage, and catabolism, we compared these activities in the terminal 3 centimeters of roots excised from boron-deficient and -sufficient squash plants (Cucurbita pepo L.). Transferring 5-day-old squash plants to a boron-deficient nutrient solution resulted in cessation of root elongation within 18 hours. However, withholding boron for up to 30 hours did not result in either impaired de novo pyrimidine biosynthesis or a change in the sensitivity of the de novo pathway to regulation by end product inhibition. Boron deprivation had no significant effect on pyrimidine salvage or catabolism. These results provide evidence that boron-deficient plants are not starved for uridine nucleotides collectively. Whether a particular pyrimidine nucleotide or derivative is limiting during boron deprivation remains to be examined.  相似文献   

14.
We report in this study an intrinsic link between pyrimidine metabolism and liver lipid accumulation utilizing a uridine phosphorylase 1 transgenic mouse model UPase1-TG. Hepatic microvesicular steatosis is induced by disruption of uridine homeostasis through transgenic overexpression of UPase1, an enzyme of the pyrimidine catabolism and salvage pathway. Microvesicular steatosis is also induced by the inhibition of dihydroorotate dehydrogenase (DHODH), an enzyme of the de novo pyrimidine biosynthesis pathway. Interestingly, uridine supplementation completely suppresses microvesicular steatosis in both scenarios. The effective concentration (EC50) for uridine to suppress microvesicular steatosis is approximately 20 µM in primary hepatocytes of UPase1-TG mice. We find that uridine does not have any effect on in vitro DHODH enzymatic activity. On the other hand, uridine supplementation alters the liver NAD+/NADH and NADP+/NADPH ratios and the acetylation profile of metabolic, oxidation-reduction, and antioxidation enzymes. Protein acetylation is emerging as a key regulatory mechanism for cellular metabolism. Therefore, we propose that uridine suppresses fatty liver by modulating the liver protein acetylation profile. Our findings reveal a novel link between uridine homeostasis, pyrimidine metabolism, and liver lipid metabolism.  相似文献   

15.
The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT. To characterize this unique parasite enzyme, LdUPRT was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Kinetic analysis revealed apparent Km values of 20 and 99 μm for the natural substrates uracil and phosphoribosylpyrophosphate, respectively, as well as apparent Km values 6 and 7 μm for the pyrimidine analogs 5-fluorouracil and 4-thiouracil, respectively. Size exclusion chromatography revealed the native LdUPRT to be tetrameric and retained partial structure and activity in high concentrations of urea. L. donovani mutants deficient in de novo pyrimidine biosynthesis, which require functional LdUPRT for growth, are hypersensitive to high concentrations of uracil, 5-fluorouracil, and 4-thiouracil in the growth medium. This hypersensitivity can be explained by the observation that LdUPRT is substrate-inhibited by uracil and 4-thiouracil, but 5-fluorouracil toxicity transpires via an alternative mechanism. This substrate inhibition of LdUPRT provides a protective mechanism for the parasite by facilitating purine and pyrimidine nucleotide pool balance and by sparing phosphoribosylpyrophosphate for consumption by the nutritionally indispensable purine salvage process.  相似文献   

16.

Background

The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines.

Methodology/Principal Findings

Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import.

Conclusion/Significance

This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania.  相似文献   

17.
UMP pyrophosphorylase (EC 2.4.2.9, UMP:pyrophosphate phosphoribosyltransferase) was purified approximately 85-fold from exponentially growing cells of Tetrahymena pyriformis GL-7. It was found to have a molecular weight of 36,000, and was active over a broad pH range, with an optimum at 7.5. The enzyme exhibited a temperature optimum at 40 °C, above which irreversible inactivation began to occur. The apparent Km values for uracil and phosphoribosyl pyrophosphate (PRPP) were 0.4 and 6.9 m, respectively. The pyrophosphorylase exhibited a pyrimidine base specificity for uracil, although 5-fluorouracil was utilized by the enzyme. Neither cytosine, orotic acid, nor 6-azauracil competed with uracil for the enzyme or inhibited the production of UMP from uracil and PRPP. Although most triphosphates had little effect on pyrophosphorylase activity, UTP and dUTP, each at a concentration of 1 mm, depressed UMP formation by 86 and 59%, respectively. Thus, UMP pyrophosphorylase may be sensitive to feedback inhibition by the product of the pathway it initiates. UMP pyrophosphorylase specific activity in extracts of Tetrahymena grown in a medium containing uracil as the sole pyrimidine source was threefold higher than that in extracts of cells grown on uridine or UMP.  相似文献   

18.
A bacterium, Ochrobactrum anthropi, produced a large amount of a nucleosidase when cultivated with purine nucleosides. The nucleosidase was purified to homogeneity. The enzyme has a molecular weight of about 170,000 and consists of four identical subunits. It specifically catalyzes the irreversible N-riboside hydrolysis of purine nucleosides, the Km values being 11.8 to 56.3 μM. The optimal activity temperature and pH were 50°C and pH 4.5 to 6.5, respectively. Pyrimidine nucleosides, purine and pyrimidine nucleotides, NAD, NADP, and nicotinamide mononucleotide are not hydrolyzed by the enzyme. The purine nucleoside hydrolyzing activity of the enzyme was inhibited (mixed inhibition) by pyrimidine nucleosides, with Ki and Ki′ values of 0.455 to 11.2 μM. Metal ion chelators inhibited activity, and the addition of Zn2+ or Co2+ restored activity. A 1.5-kb DNA fragment, which contains the open reading frame encoding the nucleosidase, was cloned, sequenced, and expressed in Escherichia coli. The deduced 363-amino-acid sequence including a 22-residue leader peptide is in agreement with the enzyme molecular mass and the amino acid sequences of NH2-terminal and internal peptides, and the enzyme is homologous to known nucleosidases from protozoan parasites. The amino acid residues forming the catalytic site and involved in binding with metal ions are well conserved in these nucleosidases.  相似文献   

19.
In-depth study of structure-based drug designing can provide vital leads for the development of novel, clinically active molecules. In this present study, twenty six novel pyrazolo[1,5-a]pyrimidine analogues (6a-6z) were designed using molecular docking studies. The designed molecules were synthesized in good yields. Structural elucidation of the synthesized molecules was carried out using IR, MS, 1H NMR and 13C NMR spectroscopy. All the synthesized compounds were evaluated for their in-vitro anti-tubercular activity against H37Rv strain by Alamar Blue assay method. Most of the synthesized compounds displayed potent anti-tubercular activities. Amongst all the tested compounds 6p, 6g, 6n and 6h exhibited promising anti-tubercular activity. Further, these potent compounds were gauged for MDR-TB, XDR-TB and cytotoxic study. None of these compounds exhibited potent cytotoxicity. Stability of protein ligand complex was further evaluated by molecular dynamics simulation for 10 ns. All these results indicate that the synthesized compounds could be potential leads for further development of new potent anti-tubercular agents.  相似文献   

20.
Inactivation of iscS encoding cysteine desulfurase results in a slow growth phenotype associated with the deficiency of iron-sulfur clusters, thiamine, NAD, and tRNA thionucleosides in Escherichia coli. However, the other roles of iscSin vivo are unknown. By using differential screening strategies, we identified 2 pyrimidine salvage enzymes, namely, uridine phosphorylase and cytidine deaminase, which were down-regulated in the iscS mutant. Both enzymes are positively regulated by the cAMP receptor protein (CRP). We also identified a novel protein complex, namely, YeiT-YeiA, whose expression level was decreased in the iscS mutant. The recombinant YeiT-YeiA complex exhibited NADH-dependent dihydropyrimidine dehydrogenase activity, indicating its role in pyrimidine metabolism. The presence of a CRP-binding consensus sequence on the 5′-upstream of the yeiT-YeiA gene suggests its regulation by CRP. These results provide a clue to the possible role of iscS in pyrimidine metabolism by gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号