首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence, in Hereditary Spherocytosis, of an oxidative damage to red blood cell membranes was studied by "in vitro" treatment of the erythrocytes with tert-butylhydroperoxide, methylene blue, or phenylhydrazine. Spherocytes were found to be more sensitive than normal erythrocytes to the action of these drugs. Tert-butylhydroperoxide caused a more intense lipid peroxidation as well as more extensive membrane protein alterations, namely spectrin degradation, formation of high molecular weight aggregates, and globin binding to the membrane. Marked spectrin degradation was also induced by methylene blue and by phenylhydrazine, which differed from each other for their effects on the generation of membrane-bound globin and of intermediate proteolysis products. Spectrin appeared therefore to be, in Hereditary Spherocytosis, a highly sensitive target to oxidative stress, a phenomenon which may, also "in vivo", increase the rate of spectrin loss thus enhancing erythrocyte fragility.  相似文献   

2.
Spin-trapping agents have been used to study the involvement of free radicals in phenylhydrazine-induced haemolysis. Spin traps were found to decrease the rate of oxygen uptake and the rate of haemoglobin oxidation in the reaction of phenylhydrazine with oxyhaemoglobin. Spin traps were also found to inhibit haemolysis and lipid peroxidation in phenylhydrazine-treated fresh human erythrocytes, with a concomitant production of phenyl radical spin adducts. Lipophilic spin traps were found to be more effective inhibitors of haemolysis than their hydrophilic analogues.  相似文献   

3.
Oxidant and free radical-generating system were used to promote oxidative damage in erythrocytes. Among the oxidants used, phenylhydrazine represents one of the most investigated intracellular free radical-generating probes, which in the presence of haemoglobin autooxidises and give rise to hydroxyl radical, a marker for cellular damage. Erythrocyte, as a single cell, is a good model to be used for studying the haemolytic mechanism of anaemia. Our present investigations reveal increased lipid peroxidation of erythrocyte using phenylhydrazine as well as other oxygen-generating systems (hydrogen peroxide, iron with hydrogen peroxide). It has further been observed that not only lipid peroxidation, phenylhydrazine causes significant elevation in methemoglobin formation, catalase activity and turbidity, in the above system, which are the typical characteristics of haemolytic anaemia. However, exogenous administration of green tea leaf extract and ascorbic acid as natural antioxidants and free radical scavengers were shown to protect separately increased lipid peroxidation caused by phenylhydrazine, though the degree of protection is more in case of green tea leaf extract than ascorbic acid. Results suggest that oxidative damage in vivo due to haemolytic disease may be checked to some extent by using natural antioxidants. (Mol Cell Biochem 276: 205–210, 2005)  相似文献   

4.
The correlation between the spectral changes in hemoglobin and the severity of anemia induced by phenylhydrazine treatment was studied for the differential sensitivity of amphibians to the drug. Froglets were the most sensitive to phenylhydrazine, followed by prometamorphic tadpoles, adult frogs, metamorphic climax tadpoles, and triiodothyronine-treated tadpoles. The different sensitivities to the hemolytic action of the drug in these animals was rationalized in terms of accessibility, uptake, and detoxication of phenylhydrazine, and a different rate of removal of damaged cells. Postmetamorphic responses were noted for the low uptake of phenylhydrazine by erythrocytes and the loss of facilitated diffusion of 3-O-methylglucose by the erythrocytes of the adult frog.  相似文献   

5.
The expression of IgG receptor sites at the band 3 protein is important for the recognition and elimination of aged and experimentally altered erythrocytes. Membrane bound IgG was detected in different erythrocyte preparations and microvesicles by means of electron microscopic procedures (protein A-gold-, protein A-gold-silver- and anti-ferritin-sandwich-technique) and light microscopic procedures (immunofluorescence). Physiologically "old", pronase and neuraminidase as well as diamide treated erythrocytes and microvesicles demonstrated significant IgG loading. An increased IgG binding of erythrocytes treated with phenylhydrazine was only evident when higher phenylhydrazine concentrations were used. Both, the alteration of the glycocalyx (conformational changes of the external segment of the glycophorins) and the alteration of the membrane skeleton lead to an unmasking of the IgG receptor site at band 3 proteins (transmembrane effect). The result is an overcritical loading of cells with IgG molecules which initiate the elimination of the erythrocytes by macrophages of the Reticulo-Histiocytic-System.  相似文献   

6.
Reticulocytosis was induced in rabbits by two methods: phlebotomy and injection of phenylhydrazine. Normal erythrocytes, reticulocytes from bed rabbits, reticulocytes from phenylhydrazine-treated rabbits, and erythrocytes treated in vitro with phenylhydrazine were compared with respect to their plasma membrane labeling by galactose oxidase and NaB3H4, and lactoperoxidase-catalyzed incorporation of 125I. Normal erythrocyte membranes and membranes from reticulocytes of bled rabbits showed almost identical labeling patterns, the presence of 2–3 glycoproteins with moderate to low mobilities on dodecyl sulfate acrylamide gel electrophoresis. Labeling in the absence of enzyme was negligible. In contrast, the reticulocytes from phenylhydrazine-treated rabbits exhibited a large incorporation of tritium without prior treatment with galactose oxidase. Even after prereduction with unlabeled NaBH4 to remove this nonspecific labeling, the labeled glycoprotein components found in normal erythrocytes were not detectable. Normal erythrocytes treated in vitro with phenylhydrazine, washed, and labeled with galactose oxidase had labeling patterns, including high nonspecific incorporation of 3H, similar to those observed with in vivo phenylhydrazine treatment.Solubilization of membranes with lithium diiososalicylate followed by partitioning with phenol showed that the same glycoproteins were presented in normal or phenylhydrazine membranes, although only the former extract was labeled by galactose oxidase. Individual carbohydrates from the membranes were analyzed by gas-liquid chromatography and, in the case of hexosamines, on the amino acid analyzer. The results of these analyses indicated a slight decline in galactose content with phenylhydrazine treatment. Reticulocyte membranes from bled rabbits also showed a decrease in galactose content, although it was less pronounced.Most of the label incorporated by nonspecific borohydride labeling of membranes from phenylhydrazine-treated animals was found associated with protein. The modified amino acids from labeled proteins are similar to those formed in reactions of oxidized lipids and proteins in model systems.  相似文献   

7.
The addition of malondialdehyde to erythrocytes in vitro causes a decrease in bands 1 and 2 of spectrin and an increase in high molecular weight protein polymers. Additionally, this agent causes the formation of fluorscent chromolipids characteristic of those produced during the peroxidation of endogenous membrane phospholipids. These same alterations in proteins and lipids are observed in the membranes of older cells fractionated from freshly drawn blood and in the membranes of reticulocytes induced by treatment of animals with phenylhydrazine, but not in reticulocytes induced by bleeding. The former reticulocytes have a much shorter half-life in the circulation than do either normal erythrocytes or reticulocytes produced consequent to bleeding. These experiments and the apparent paradox of "young" reticulocytes with short half-lives suggest that the in vivo polymerization of membrane proteins consequent to radical-induced peroxidation of membrane lipids may contribute to the altered rheological behavior and hence to the splenic sequestration of cells. They also suggest that increases in intrinsic membrane rigidity due to lipid peroxidation, malondialdehyde, and protein polymerization may be a common feature of both aging in normal erythrocytes and in the accelerated aging that accompanies the administration of radical-generating, hemolytic agents. However, it is cautioned that other polymerization reactions involving disulfides, calcium, or direct radical attack on protein monomers may also be important determinants of the visco-elastic properties of erythrocyte membranes.  相似文献   

8.
The activity of NADH-methemoglobin reductase (metHb-reductase) in membranes isolated from human erythrocytes treated with phenylhydrazine at its sublytic concentration was studied. A decrease in the activity of membrane-bound metHb-reductase was shown to depend on the concentration of phenylhydrazine. Simultaneously, an increase in the level of membrane-bound methemoglobin and a change in the fluorescence parameters of membrane-bound 4,4'-diisothiocy-anatostilbene-2,2'-disulfonic acid were registered. In the case when Hb-free erythrocyte ghosts were treated with 0.2-2.0 mM phenylhydrazine, the activity of metHb-reductase did not change. The obtained results indicate that the inhibition of the activity of membrane-bound metHb-reductase by phenylhydrazine-induced oxidative stress in human erythrocytes is not caused by the direct action of the oxidant on the enzyme. The reason for this is the interaction of the products of hemoglobin oxidation with erythrocyte membrane (protein band 3) and structural changes in membrane proteins.  相似文献   

9.
通过对低渗溶血过程、荧光淬灭效应及阴离子跨膜通透性的研究,探讨了苯肼对红细胞膜结构和功能的影响。苯肼浓度0.01mM时,低渗溶血的K_1快过程开始变慢,表明膜脂质流动性的降低。苯肼浓度增至0.1mM后,膜和变性血红蛋白的结合大为增强,这种膜结构的变化提高了阴离子的跨膜通透性。  相似文献   

10.
Antioxidative activity of natural products from plants   总被引:28,自引:0,他引:28  
Ng TB  Liu F  Wang ZT 《Life sciences》2000,66(8):709-723
A variety of flavonoids, lignans, an alkaloid, a bisbenzyl, coumarins and terpenes isolated from Chinese herbs was tested for antioxidant activity as reflected in the ability to inhibit lipid peroxidation in rat brain and kidney homogenates and rat erythrocyte hemolysis. The pro-oxidant activities of the aforementioned compounds were assessed by their effects on bleomycin-induced DNA damage. The flavonoids baicalin and luteolin-7-glucuronide-6'-methyl ester, the lignan 4'-demethyldeoxypodophyllotoxin, the alkaloid tetrahydropalmatine, the bisbenzyl erianin and the coumarin xanthotoxol exhibited potent antioxidative activity in both lipid peroxidation and hemolysis assays. The flavonoid rutin and the terpene tanshinone I manifested potent antioxidative activity in the lipid peroxidation assay but no inhibitory activity in the hemolysis assay. The lignan deoxypodophyllotoxin, the flavonoid naringin and the coumarins columbianetin, bergapten and angelicin slightly inhibited lipid peroxidation in brain and kidney homogenates. It is worth stressing that the compounds with antioxidant effects in this assay, with the exception of tetrahydropalmatin and tanshinone I, have at least one free aromatic hydroxyl group in structure. Obviously, the aromatic hydroxyl group is very important for antioxidative effects of the compounds. None of the compounds tested exerted an obvious pro-oxidant effect.  相似文献   

11.
We examined the effects of cell aging and phenylhydrazine-induced oxidant damage on erythrocyte cathepsin E, which is present as a latent, membrane-associated enzyme in normal human erythrocytes. When young erythrocytes isolated from human mature erythrocytes by Percoll density gradient centrifugation were aged in vitro, the membrane-associated cathepsin E was progressively released from the membrane as an active enzyme. During the cell aging up to 100 h, about 40% of the membrane-associated enzyme was activated and solubilized. When phenylhydrazine was incubated with the erythrocytes, it also caused the activation and solubilization of cathepsin E in a dose-dependent and time-dependent manner. Exposure of erythrocytes to 2.5 mM phenylhydrazine for up to 2 h led to about 40% activation of the membrane-associated enzyme. Both aging and phenylhydrazine-treatment were accompanied with an increase in the association of the cytosolic proteins, primarily hemoglobin, with the membrane, which occurred prior to the release of cathepsin E from the membrane. A similar activation for the membrane-associated enzyme was observed with in vitro-aged hemoglobin-free membrane ghosts. Thus, the primary mechanism for activation of cathepsin E in the intact cells seems to be through lesion of the membrane framework that results from increased binding of hemoglobin to the membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting employing polyclonal IgG antibodies for human spectrin and band 3 revealed that breakdown of the membrane proteins was enhanced in both aged and phenylhydrazine-treated cells. The relation between the cathepsin E activation and the membrane protein breakdown is discussed.  相似文献   

12.
The degree of hemolysis was studied comparatively in intact and nephrectomized rats after the phenylhydrazine injection. In the nephrectomized animals hemolytic (phenylhydrazine) anemia was expressed by a lesser reduction of the total erythrocyte count, of the percentage of Cr51-labeled erythrocytes, and of the intensity of the reaction for hemosiderin in the organs and tissues. A lesser degree of erythrodieresis was found in the nephrectomized rats and after an acute unsubstituted blood loss. Blood perfusion through the kidney of anemic rats led to increase of the potassium concentration in the plasma perfusate, reduction of the electrophoretic mobility of erythrocytes, their resistance, hemolysis duration, and to decrease of albumin fractions with the mol wt of from 74 500 to 27 000 in the erythrocyte stroma.  相似文献   

13.
The synthesis of mitochondrial enzymes induced by exposure of anaerobically grown, lipid-depleted Saccharomyces cerevisiae to oxygen is inhibited by d(-)-threo-chloramphenicol and erythromycin. The concentration of these antibiotics required to cause 50% inhibition of this synthesis is less than 1 mm; this is also approximately the concentration required to inhibit by the same amount mitochondrial protein synthesis in situ. The synthesis of unsaturated fatty acids, ergosterol, and phospholipid induced by aeration is inhibited by d(-)-threo-chloramphenicol at high concentrations (12 mm) but is unaffected by erythromycin. l(+)-threo-Chloramphenicol affects neither enzyme nor lipid synthesis and is without effect on mitochondrial protein synthesis in situ. All three compounds inhibit the oxidative activity of isolated mitochondria; the chloramphenicol isomers also inhibit phosphorylation. In a euflavine-derived petite mutant, lacking mitochondrial protein synthesis and respiration, aeration results in the normal development of lipid in the cells, but no synthesis of mitochondrial enzymes. d(-)-threo-Chloramphenicol does not inhibit lipid synthesis in these cells. Thus inhibition of mitochondrial protein synthesis with erythromycin or genetic deletion of mitochondrial protein synthesis results in loss of the capacity to synthesize enzymes during aeration. d(-)-threo-Chloramphenicol, as well as inhibiting induced enzyme formation, inhibits lipid synthesis induced by oxygen. It is unlikely that the latter effect of chloramphenicol is due to inhibition of energy production and transformation, to direct effects on lipid synthesis, or to an inhibition of mitochondrial protein synthesis. It is, however, an effect not shared with the l isomer.  相似文献   

14.
Structurally diverse plant phenolics were examined for their abilities to inhibit lipid peroxidation induced either by Fe(II) and Fe(III) metal ions or by azo-derived peroxyl radicals in a liposomal membrane system. The antioxidant abilities of flavonoids were compared with those of coumarin and tert-butylhydroquinone (TBHQ). The antioxidant efficacies of these compounds were evaluated on the basis of their abilities to inhibit the fluorescence intensity decay of an extrinsic probe, 3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid (DPH-PA), caused by the free radicals generated during lipid peroxidation. All the flavonoids tested exhibited higher antioxidant efficacies against metal-ion-induced peroxidations than peroxyl-radical-induced peroxidation, suggesting that metal chelation may play a larger role in determining the antioxidant activities of these compounds than has previously been believed. Distinct structure–activity relationships were also revealed for the antioxidant abilities of the flavonoids. Presence of hydroxyl substituents on the flavonoid nucleus enhanced activity, whereas substitution by methoxy groups diminished antioxidant activity. Substitution patterns on the B-ring especially affected antioxidant potencies of the flavonoids. In cases where the B-ring could not contribute to the antioxidant activities of flavonoids, hydroxyl substituents in an catechol structure on the A-ring were able to compensate and become a larger determinant of flavonoid antioxidant activity.  相似文献   

15.
After incubation of human erythrocytes at 37 degrees C in the absence of glucose (A) for 24 h, (B) for 4 h with 8 mM hexanol or (C) for 3 h with SH reagents, phosphatidylethanolamine becomes partly susceptible to hydrolysis by phospholipase A2 from Naja naja. The presence of glucose during the pretreatments suppresses this effect, except in the case of SH reagents that inhibit glycolysis. After incubation with tetrathionate, up to 45% of the phosphatidylethanolamine is degraded by the enzyme, an amount considerably in excess of the 20% attacked in fresh erythrocytes. Pancreatic phospholipase A2, an enzyme unable to hydrolyse the phospholipids of intact erythrocytes, partially degrades phosphatidylcholine and phosphatidylethanolamine of erythrocytes pretreated with hexanol or SH reagents. Reagents capable of oxidizing SH groups to disulfides (tetrathionate, o-iodosobenzoate and hydroquinone) even render susceptible to pancreatic phospholipase A2 phosphatidylserine, a phospholipid supposed to be entirely located in the inner lipid layer of the membrane. Alkylating or acylating SH reagents have no such effect. It is postulated that disulfide bond formation between membrane protein SH groups leads to an alteration in protein-phospholipid interactions and consequently induces a reorientation of phospholipids between the inner and the outer membrane lipid layer.  相似文献   

16.
Three instances of the involvement of dioxygen-derived radicals in biological systems are considered. The first concerns the formation of radicals in the haemolytic reactions induced by treatment of erythrocytes by phenylhydrazine, as an example of the so-called 'oxidant drugs'. The evidence for the formation of phenyl radicals is considered and their origin in the oxidation of phenylhydrazine by a ferryl derivative of haemoglobin postulated. The relevance to the formation of phenylated iron and porphyrin species is described. It is suspected that many instances of oxidative damage to cellular systems result from the coincidence of unsequestered redox-active metal ions (particularly those of iron and copper), reductants, and dioxygen. As an example, the damage to hepatocytes, grown in a culture medium containing cysteine, is described. The formation of radical species derived from dioxygen during the respiratory burst associated with phagocytosis is discussed. A new electrochemical method of detecting the superoxide ion produced during the respiratory burst is described. Particular emphasis is placed on the relation between the production of radical species such as the hydroxyl radical and the superoxide ion, and the extent of phagocytosis.  相似文献   

17.
It is shown that non-covalent attachment of streptavidin, as well as of avidin, to biotinylated human erythrocytes induces homologous hemolysis by complement. Rabbit antiserum against human C3 is found to inhibit the lysis specifically as compared with non-immune rabbit serum. Efficiency of lysis inhibition is greater for avidin- and streptavidin-induced lysis of biotinylated human erythrocytes than for antibody-sensitized sheep erythrocytes. In contrast to positively charged avidin (pI 11), streptavidin is a neutral protein. Hence, hemolysis of streptavidin-carrying erythrocytes is inconsistent with the suggestion on the crucial role of avidin charge in lysis. Membrane alterations (cross-linking and clusterization of biotinylated components) induced by avidin (streptavidin) seem to be a more plausible explanation for the lysis.  相似文献   

18.
Bacillus cereus sphingomyelinase (Bc-SMase) induces hemolysis of sheep erythrocytes which contain large amounts of sphingomyelin. We investigated the mechanism of this hemolysis in comparison to that induced by Clostridium perfringens alpha-toxin. Pertussis toxin, a Gi-specific inhibitor, N-oleoylethernolamine, a ceramidase inhibitor, and dihydrosphingosine, a sphingosine kinase inhibitor, did not inhibit the hemolysis by Bc-SMase, but did inhibit that by alpha-toxin. Bc-SMase broadly bound to whole membranes, and alpha-toxin specifically bound to the detergent-resistant membrane fractions, lipid rafts. The level of ceramide production induced by Bc-SMase in sheep erythrocytes was 6- to 15-fold that induced by alpha-toxin, when the extent of the hemolysis by Bc-SMase was the same as that by the toxin. However, the level of ceramide production induced by Bc-SMase in SM-liposomes was equal to that triggered by the toxin, when the carboxyl fluorescein-release from liposomes induced by Bc-SMase was the same as that induced by alpha-toxin. Confocal laser microscopy showed that treatment of the cells with Bc-SMase resulted in the formation of ceramide-rich domains. A photobleaching analysis suggested that treatment of the cells with Bc-SMase leads to a reduction in membrane fluidity. These results show that Bc-SMase-induced hemolysis of sheep erythrocytes is related to the formation of interface between ceramide-rich domains and ceramide-poor domains through production of ceramide from SM.  相似文献   

19.
Silybin dihemisuccinate produces a decrease in the ethanol metabolic rate of rats. This effect is ascribed to an inhibition of the microsomal ethanol oxidizing system (MEOS). Alcohol dehydrogenase activity, catalase activity and NADPH cytochrome c reductase activity are not affected by the flavonoid. It is proposed that the inhibition of MEOS by silybin dihemisuccinate is related to its antioxidant properties, acting as a scavenger of the free radicals involved in ethanol metabolism by this enzymatic system. This observation may have therapeutical implications because microsomal lipid peroxidation induced by hydroxyl free radicals has been related to the etiology of hepatic alcoholic disease.  相似文献   

20.
It has been previously reported that the main diene-conjugated fatty acid in human plasma is a non-oxygen containing linoleic acid isomer (PL-9, 11-LA'). It has also been proposed that this isomer can be used as a specific marker of free radical-mediated lipid peroxidation in humans. Here we report that the in vitro induction of lipid peroxidation in human and rat blood with either UV irradiation or phenylhydrazine failed to increase the plasma levels of this isomer. The induction of lipid peroxidation in vivo in rats pretreated with either phenylhydrazine or bromotrichloromethane also failed to increase the plasma levels of this isomer. These findings demonstrate that PL-9, 11-LA' cannot be used as an in vivo marker of free radical-mediated lipid peroxidation in rats and casts doubts on its validity as a specific marker in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号