首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiotensinogen (AGT)-deficient mice die shortly after birth presumably due to renal dysfunction caused by the presence of severe vascular and tubular lesions in the kidney. Because AGT is expressed in renal proximal tubule cells, we hypothesized that its loss may be the primary mediator of the lethal phenotype. We generated two models to test this hypothesis by breeding transgenic mice expressing human renin with mice expressing human AGT (hAGT) either systemically or kidney-specifically. We then bred double transgenic mice with AGT+/- mice, intercrossed the compound heterozygotes, and examined the offspring. We previously reported that the presence of the human renin and systemically expressed hAGT transgene complemented the lethality observed in AGT-/- mice. On the contrary, we show herein that the presence of the human renin and kidney-specific hAGT transgene cannot rescue lethality in AGT-/- mice. An analysis of newborns indicated that AGT-/- mice were born in normal numbers, and collection of dead 10-day old pups revealed an enrichment in AGT-/-. Importantly, we demonstrated that angiotensinogen protein and functional angiotensin II was generated in the kidney, and the kidney-specific transgene was temporally expressed during renal development similar to the endogenous AGT gene. These data strongly support the notion that the loss of systemic AGT, but not intrarenal AGT, is responsible for death in the AGT-/- mouse model. Taken together with our previous studies, we conclude that the intrarenal renin-angiotensin system located in the proximal tubule plays an important role in blood pressure regulation and may cause hypertension if overexpressed, but may not be required for continued development of the kidney after birth.  相似文献   

2.
3.
The purpose of this study is to examine the regulation of blood pressure and fluid and electrolyte homeostasis in mice overexpressing angiotensin II (Ang-II) in the brain and to determine whether there are significant physiologic differences in Ang-II production in neurons or glia. Therefore, we generated and characterized transgenic mice overexpressing human renin (hREN) under the control of the glial fibrillary acidic protein (GFAP) promoter (GFAP-hREN) and synapsin-I promoter (SYN-hREN) and bred them with mice expressing human angiotensinogen (hAGT) under the control of the same promoters (GFAP-hAGT and SYN-hAGT). Both GFAP-hREN and SYN-hREN mice exhibited the highest hREN mRNA expression in the brain and had undetectable levels of hREN protein in the systemic circulation. In the brain of GFAP-hREN and SYN-hREN mice, hREN protein was observed almost exclusively in astrocytes and neurons, respectively. Transgenic mice overexpressing both hREN and hAGT transgenes in either glia or neurons were moderately hypertensive. In the glia-targeted mice, blood pressure could be corrected by intracerebroventricular injection of the Ang-II type 1 receptor antagonist losartan, and intravenous injection of a ganglion blocking agent, but not an arginine vasopressin V1 receptor antagonist, lowered blood pressure. These data suggest that stimulation of Ang-II type 1 receptors in the brain by Ang-II derived from local synthesis of renin and angiotensinogen can cause an elevation in blood pressure via a mechanism involving enhanced sympathetic outflow. Glia- and neuron-targeted mice also exhibited an increase in drinking volume and salt preference, suggesting that chronic overexpression of renin and angiotensinogen locally in the brain can result in hypertension and alterations in fluid homeostasis.  相似文献   

4.
In the brain, angiotensinogen (AGT) is primarily expressed in astrocytes; brain ANG II derived from locally produced AGT has been shown to influence blood pressure. To better understand the molecular basis of AGT expression in the brain, we identified a human astrocytoma cell line, CCF-STTG1, that expresses endogenous AGT mRNA and produces AGT protein. Studies examining CCF-STTG1 cell AGT after N- and O-glycosidase suggest that AGT may not be posttranslationally modified by glycosylation in these cells as it is in plasma. Small amounts of AGT (5% of HepG2) were detected in the culture medium, suggesting a low rate of AGT secretion. Immunocytochemical examination of AGT in CCF-STTG1 cells revealed mainly nuclear localization. Although this has not been previously reported, it is consistent with nuclear localization of other serpin family members. To examine this further, we generated a fusion protein consisting of green fluorescent protein (GFP) and human AGT and examined subcellular localization by confocal microscopy after confirming expression of the fusion protein by Western blot. In CCF-STTG1 cells, a control GFP construct lacking AGT was mainly localized in the cytoplasm, whereas the GFP-AGT fusion protein was primarily localized in the nucleus. To map the location of a potential nuclear localization signal, overlapping 500-bp fragments of human AGT cDNA were fused in frame downstream of GFP. Although four of the fusion proteins exhibited either perinuclear or cytoplasmic localization, one fusion protein encoding the COOH terminus of AGT was localized in the nucleus. Importantly, nuclear localization of human AGT was confirmed in primary cultures of glial cells isolated from transgenic mice expressing the human AGT under the control of its own endogenous promoter. Our results suggest that AGT may have a novel intracellular role in the brain apart from its predicted endocrine function.  相似文献   

5.
6.
Hypertension is a serious risk factor for cardiovascular disease, and the angiotensinogen (AGT) gene locus is associated with human essential hypertension. The human AGT (hAGT) gene has an A/G polymorphism at -6, and the -6A allele is associated with increased blood pressure. However, transgenic mice containing 1.2 kb of the promoter with -6A of the hAGT gene show neither increased plasma AGT level nor increased blood pressure compared with -6G. We have found that the hAGT gene has three additional SNPs (A/G at -1670, C/G at -1562, and T/G at -1561). Variants -1670A, -1562C, and -1561T almost always occur with -6A, and variants -1670G, -1562G, and -1561G almost always occur with -6G. Therefore, the hAGT gene may be subdivided into either -6A or -6G haplotypes. We show that these polymorphisms affect the binding of HNF-1α and glucocorticoid receptor to the promoter, and a reporter construct containing a 1.8-kb hAGT gene promoter with -6A haplotype has 4-fold increased glucocorticoid-induced promoter activity as compared with -6G haplotype. In order to understand the physiological significance of these haplotypes in an in vivo situation, we have generated double transgenic mice containing either the -6A or -6G haplotype of the hAGT gene and the human renin gene. Our ChIP assay shows that HNF-1α and glucocorticoid receptor have stronger affinity for the chromatin obtained from the liver of transgenic mice containing -6A haplotype. Our studies also show that transgenic mice containing -6A haplotype have increased plasma AGT level and increased blood pressure as compared with -6G haplotype. Our studies explain the molecular mechanism involved in association of the -6A allele of the hAGT gene with hypertension.  相似文献   

7.
Angiotensinogen (AGT), mainly produced in the liver, is the precursor of angiotensin II, an important regulator of blood pressure and electrolyte homeostasis. We previously showed, in hepatoma-derived HepG2 cells that a hepatocyte nuclear factor 4 (HNF4) potentiated human AGT (hAGT) promoter activity and identified its binding sites (termed regions C and J) in the hAGT promoter region. We also showed in transgenic mouse (TgM) that the hAGT is abundantly expressed in the kidney where the level of endogenous mouse AGT (mAGT) expression is low. To elucidate molecular mechanisms of the AGT gene activation in the kidney, we first investigated the HNF4 and AGT expression in the mouse kidney. Northern blot, in situ hybridization and immunohistochemical analyses revealed that the hAGT and HNF4 were both expressed in the proximal tubular (PT) cells of the kidney. We then transfected the hAGT reporter constructs into immortalized mouse PT (mProx) cells and found that regions C and J contributed additively to the HNF4-potentiated hAGT promoter activity. Curiously, no obvious HNF4 binding motif was found in the corresponding region of the mAGT promoter and co-transfected HNF4 failed to activate this promoter in neither HepG2 nor mProx cells. These results suggest that the high-level hAGT expression in the TgM kidney is, at least in part, due to a presence of high-affinity HNF4 binding sites in its promoter.  相似文献   

8.
9.
Tissue-specific ablation of gene function is possible in vivo by the Cre-loxP recombinase system. We generated transgenic mice containing a human angiotensinogen gene flanked by loxP sites (hAGT(flox)). To examine the physiologic consequences of tissue-specific loss of angiotensinogen gene function in vivo, we constructed an adenovirus expressing Cre recombinase. Studies were performed in several independent lines of hAGT(flox) mice before and after intravenous administration of either Adcre or AdbetaGal as a control. Systemic administration of Adcre caused a significant decrease in circulating human angiotensinogen and markedly blunted the pressor response to administration of purified recombinant human renin. Southern blot analysis of genomic DNA from various organs revealed that the Cre-mediated deletion was liver-specific. Further analysis revealed the absence of full-length human angiotensinogen mRNA and protein in the liver but not the kidney of Adcre mice, consistent with the liver being the target for adenoviruses administered intravenously. These studies demonstrate that extra-hepatic sources of angiotensinogen do not contribute significantly to the circulating pool of angiotensinogen and provide proof-of-principle that the Cre-loxP system can be used effectively to examine the contribution of the systemic and tissue renin-angiotensin system to normal and pathological regulation of blood pressure.  相似文献   

10.
In addition to the well-defined contribution of the liver, adipose tissue has been recognized as an important source of angiotensinogen (AGT). The purpose of this study was to define the angiotensin II (ANG II) receptors involved in regulation of adipose AGT and the relationship of this control to systemic AGT and/or angiotensin peptide concentrations. In LDL receptor-deficient (LDLR(-/-)) male mice, adipose mRNA abundance of AGT was 68% of that in liver, and adipose mRNA abundance of the angiotensin type 1a (AT(1a)) receptor (AT(1a)R) was 38% of that in liver, whereas mRNA abundance of the angiotensin type 2 (AT(2)) receptor (AT(2)R) was 57% greater in adipose tissue than in liver. AGT and angiotensin peptide concentrations were decreased in plasma of AT(1a)R-deficient (AT(1a)R(-/-)) mice and were paralleled by reductions in AGT expression in liver. In contrast, adipose AGT mRNA abundance was unaltered in AT(1a)R(-/-) mice. AT(2)R(-/-) mice exhibited elevated plasma angiotensin peptide concentrations and marked elevations in adipose AGT and AT(1a)R mRNA abundance. Increases in adipose AGT mRNA abundance in AT(2)R(-/-) mice were abolished by losartan. In contrast, liver AGT and AT(1a)R mRNA abundance were unaltered in AT(2)R(-/-) mice. Infusion of ANG II for 28 days into LDLR(-/-) mice markedly increased adipose AGT and AT(1a)R mRNA but did not alter liver AGT and AT(1a)R mRNA. These results demonstrate that differential mRNA abundance of AT(1a)/AT(2) receptors in adipose tissue vs. liver contributes to tissue-specific ANG II-mediated regulation of AGT. Chronic infusion of ANG II robustly stimulated AT(1a)R and AGT mRNA abundance in adipose tissue, suggesting that adipose tissue serves as a primary contributor to the activated systemic renin-angiotensin system.  相似文献   

11.
12.
Previous studies demonstrated that overexpression of angiotensinogen (AGT) in adipose tissue increased blood pressure. However, the contribution of endogenous AGT in adipocytes to the systemic renin-angiotensin system (RAS) and blood pressure control is undefined. To define a role of adipocyte-derived AGT, mice with loxP sites flanking exon 2 of the AGT gene (Agt(fl/fl)) were bred to transgenic mice expressing Cre recombinase under the control of an adipocyte fatty acid-binding protein 4 promoter (aP2) promoter to generate mice with adipocyte AGT deficiency (Agt(aP2)). AGT mRNA abundance in adipose tissue and AGT secretion from adipocytes were reduced markedly in adipose tissues of Agt(aP2) mice. To determine the contribution of adipocyte-derived AGT to the systemic RAS and blood pressure control, mice were fed normal laboratory diet for 2 or 12 mo. In males and females of each genotype, body weight and fat mass increased with age. However, there was no effect of adipocyte AGT deficiency on body weight, fat mass, or adipocyte size. At 2 and 12 mo of age, mice with deficiency of AGT in adipocytes had reduced plasma concentrations of AGT (by 24-28%) compared with controls. Moreover, mice lacking AGT in adipocytes exhibited reduced systolic blood pressures compared with controls (Agt(fl/fl), 117 ± 2; Agt(aP2), 110 ± 2 mmHg; P < 0.05). These results demonstrate that adipocyte-derived AGT contributes to the systemic RAS and blood pressure control.  相似文献   

13.
The purpose of this review is two-fold. First, I will highlight recent advances in our understanding of the mechanisms regulating angiotensin II (ANG II) synthesis in the brain, focusing on evidence that renin is expressed in the brain and is expressed in two forms: a secreted form, which may catalyze extracellular ANG I generation from glial or neuronal angiotensinogen (AGT), and an intracellular form, which may generate intracellular ANG in neurons that may act as a neurotransmitter. Second, I will discuss recent studies that advance the concept that the renin-angiotensin system (RAS) in the brain not only is a potent regulator of blood pressure and fluid intake but may also regulate metabolism. The efferent pathways regulating the blood pressure/dipsogenic effects and the metabolic effects of elevated central RAS activity appear different, with the former being dependent upon the hypothalamic-pituitary-adrenal axis, and the latter being dependent upon an interaction between the brain and the systemic (or adipose) RAS.  相似文献   

14.
The renin-angiotensin system (RAS) is the most important regulator of electrolyte homeostasis and blood pressure. Our recently generated transgenic mice carrying either the human renin (hREN) or human angiotensinogen (hANG) genes did not develop hypertension but dual gene strains obtained by cross-mating separate lines of mice exhibited a chronically sustained increase in blood pressure, suggesting the presence of species-specific reactivity between renin and angiotensinogen. In order to examine this specificity, the present study was designed to perform a strictly comparative study on hydrolysis of hANG by hREN and mouse submandibular renin (mREN)in vitro by using pure proteins. The recombinant hANG (rhANG) and the synthetic human-type tridecapeptide (hTDP), Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Val-Ile-His, corresponding to the N-terminal sequences of hANG, were used to determine the species specificity of recombinant hREN (rhREN) and mREN. While hTDP was cleaved by both rhREN with similar Km and with the same order of kcat, rhANG was cleaved by mREN with 16.7-fold higher Km and with 28.2-fold lower kcat than by rhREN. These results showed that kcat/Km value of mREN for rhANG was 468-fold lower than that for rhREN acting on rhANG.  相似文献   

15.
16.
17.
Mice deficient for angiotensinogen (AGT), or other components of the renin-angiotensin system, show a high rate of neonatal mortality correlated with severe renal abnormalities including hydronephrosis, hypertrophy of renal arteries, and an impaired ability to concentrate urine. Although transgenic replacement of systemic or adipose, but not renal, AGT in AGT-deficient mice has previously been reported to correct some of these renal abnormalities, the tissue target for this complementation has not been defined. In the current study, we have used a novel transgenic strategy to restore the peptide product of the renin-angiotensin system, angiotensin II, exclusively in the brain of AGT-deficient mice and demonstrate that brain-specific angiotensin II can correct the hydronephrosis and partially correct renal dysfunction seen in AGT-deficient mice. Taken together, these results suggest that the renin-angiotensin system affects renal development and function through systemically accessible targets in the brain.  相似文献   

18.
Development of experimental models by genetic manipulation in mice has proven to be very useful in determining the significance of particular genes in the development of or susceptibility to hypertension. Advances in molecular genetics, transgenic mouse technology, and physiological measurements in mice provided an opportunity to go a step further and develop models to analyze the physiological significance of specific gene variants potentially causing hypertension. In this report, we describe the development of a human angiotensinogen transgenic mouse model generated by targeting the human angiotensinogen gene upstream of the mouse HPRT locus by homologous recombination. The main benefit of this transgenic mouse model is that the human angiotensinogen gene is inserted into the mouse genome as a single copy at a predefined locus and in a specific orientation-a process that can be repeated utilizing other variants of this gene. We establish the validity of this approach by showing that the hAGT(hprt) mice have normal tissue- and cell-specific expression of the human angiotensinogen gene and normally produce and process the hAGT protein at physiological levels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号